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Abstract 
 

In this paper, a new feed forward analog neural network is 

designed using a memristor based crossbar array 

architecture. This structure consists of positive and negative 

polarity connection matrices. In order to show the 

performance and usefulness of the proposed circuit, it is 

considered a sample application of iris data recognition. The 

proposed neural network implementation is approved by the 

simulation in Cadence design environment using 0.35µm 

CMOS technology. The results obtained are promising for the 

implementation of high density neural network. 

 

1. Introduction 
 

Many investigations on the implementation of analog neural 

networks field are presented in the literature [1-4]. A neural 

network is made up of a number of artificial neurons and a huge 

number of interconnections between them. A typical block-

diagram of a feed-forward neural network is shown in Fig.1 [5]. 

The main task in realizing high efficient analog neural network 

is to implement the basic block which operates as a linear 

weighted summer. This block is also referred to as synaptic 

interconnection stage. 

 Multilayer feed forward networks, a widely used neural 

network architecture, require large number of synaptic 

interconnections (multipliers). Therefore, careful design of 

multiplier is critical in achieving compact silicon area, 

minimizing power consumption and improving input range [6-8].   

On the other hand, with the discovery of the memristor 

(memory element) and its efficient use in crossbar arrays offering 

dense and regular structures [9-11], it is possible to perform 

multiplication and addition operations in the analog domain in a 

very effective way [12-14].  

As is known from the literature, the memristor element has a 

number of advantages, such as low power consumption, non-

volatile storage element, excellent scalability and integration 

[15]. Therefore, the fact that the memristor can be implemented 

as an electronic synapse in neural network applications, makes 

this element extremely attractive. 

In this paper we discuss the realization of the feed-forward 

neural network using memristive crossbar. The circuit is realized 

in cadence design environment using the macro model of 

memristor. Proper operation of the neural network is illustrated 

using iris data as a benchmark.  

 
 
This work is part of a project that has received funding from the 

European Union’s H2020 research and innovation programme 
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The paper is planned as follows: In section2, the dynamic 

model of the memristor element and its function in a crossbar 

array are briefly explained. Proposed neuron circuit realization 

with memristor crossbar array is presented in Section 3. The 

simulation results are given in Section 4. Finally, conclusion part 

is presented in Section 5. 
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Fig.1. General structure of feed-forward neural network 

 

2. Memristor Device 
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Fig.2. (a) Memristor structure, (b) Circuit notation 

 

The memristor is the fourth fundamental element conjectured 

by Chua in 1971 [16]. The physical memristor device is first 

introduced by HP Labs 37 years after [17]. The fact that the 

conceptual Chua’s memristor can be realized using HP Lab’s 

nanoscale device inspired the researchers to use this element in 

the implementations of high density systems, such as non-volatile 

memory implementations and synapse realizations in neural 

network circuits.  
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The schematic and crossbar circuit symbol of the memristor is 

shown in Fig. 2. The element has two states, one corresponding 

to the closed state, where the element displays a low resistance 

with w ≅ D, (RON); while the other corresponds to the open state, 

where the element shows a high resistance (w ≅ 0), (ROFF). 

The total resistance RMEM of the memristor can be shown by the 

following relation:  

 

𝑅𝑀𝐸𝑀(𝑥) = 𝑅𝑂𝑁𝑥 + 𝑅𝑂𝐹𝐹(1 − 𝑥),                 (1) 

 

where  𝑥 =
𝑤

𝐷
   𝜖 (0,1)                         (2) 

 

The relationship between the current and voltage of the memristor 

can be defined as follows:  

 

𝑣(𝑡) = 𝑅𝑀𝐸𝑀(𝑤)𝑖(𝑡)                (3) 

 

Depending on RON resistance, passing current and other factors, 

the speed of movement of the boundary between the doped and 

undoped regions can be shown as follows: 

 
𝑑𝑥

𝑑𝑡
= 𝑘 𝑖(𝑡)𝑓(𝑥),       𝑘 =

µ𝑣𝑅𝑂𝑁

𝐷2
                     (4)   

 

where µv is called as dopant mobility and the value of µv is 

approximately is 10-14 m2s-1V-1.   

Figure.3 shows device schematic and crossbar circuit notation of 

a memristor. This circuit can be used to effectively realize the 

synaptic weights of neural networks. The conductance of each 

memristor represents a weight. Since memristor is an element 

with memory, the use of the memristive crossbar adds dynamical 

characteristics to the synaptic weights. Beside this, the 

availability of the nanoscale devices allows the implementation 

of the neural network very effectively in a very small physical 

area.  

Analog input values are represented by symmetrical current or 

voltage pulses and outputs are obtained as voltage pulses. Thanks 

to this future, many of the basic arithmetic operation such as 

summing and multiplication can be realized very effectively in a 

single step [18].  
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Fig.3. The principle of analog vector-matrix multiplication with 

memristor array [19]. 

As it can be seen clearly from Fig.3, the vector multiplication can 

be naturally processed by directly utilizing the Kirchoff’s law. 

Through Kirchhoff’s laws, the applied voltages, Vi are multiplied 

by the conductances 𝐺𝑖
+ and 𝐺𝑖

− to give output voltages: 

 

𝑉0
+ − 𝑉0

− = ∑
𝑉𝑖(𝐺𝑖

+−𝐺𝑖
−)

𝐺0
                              (5) 

 

where 𝐺0 = 𝐺1
+ + 𝐺2

+ … 𝐺𝑁
+ = 𝐺1

− + 𝐺2
− … 𝐺𝑁

− 
 

3. Proposed Neuron Circuit Realization with 

Memristor Crossbar Array 
 

In this work, the design of neural network using memristor 

crossbar arrays is presented. In this way, a new memristor-based 

architecture is realized which suits well high density circuit 

implementation thanks to the nanoscale realization of memristors. 

As it can be seeen from the Fig. 4, neural network consists of one 

hidden layer with tanh type nonlinearity and one linear output 

neuron. 

The MOS transistor at the input layer realize tanh type 

activation functions as shown in Fig1. The output neuron is a 

simple linear perceptron, that is why, we use two voltage dividers 

in order to scale down the signal levels applied to the inputs of 

the output transistors which ensures the linear operation of these 

transistors. In addition to, the proposed circuit occupies small area 

on chip which is very important advantage from IC realization 

point of view.  
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Fig.4. Circuit diagram of the proposed neural network. 



 

In the simulation of the proposed neural network (Fig.4), the 

equivalent circuit shown in Fig.5 is used for each memristor 

element.  
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Fig.5. Structure of the SPICE model [20] 

 

The equation shown in (eq.1) can be rearranged as follows: 

 

𝑅𝑀𝐸𝑀(𝑥) = 𝑅𝑂𝐹𝐹 − 𝑥∆𝑅,   ∆𝑅 = 𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁                     (6) 

 

In this model, the initial width of the doped region is modeled by 

the initial voltage of the capacitor. This initial voltage can be 

given in terms of the physical quantities as follows:   

 

𝑥0 =
𝑅𝑂𝐹𝐹−𝑅𝐼𝑁𝐼𝑇

∆𝑅
                                       (7) 

 

4. Simulation Results 

In order to verify the feasibility of the proposed neural network 

with memristive crossbar synapsis, we simulated the proposed 

circuit in Cadence design environment using 0.35um CMOS 

technology. The circuit is biased at ±1V. Baluns are realized using 

differential pair [21]. In order to realize the memristors in the 

crossbar, we use the model of Biolek [20]. The memristive 

weights are obtained by training the network using iris data which 

is conventionally used in the literature as a benchmark. The 

parameters of the memristors in neural network in Fig.4 are 

trained using backpropagation algorithm set-up on MATLAB 

environment and these parameters are inserted to the Cadence 

netlist. The input signals are applied as a pulse with a 10% duty 

cycle. The amplitude of the pulses is set according to the iris data. 

As it can be seen from Fig.4, there are three memristor 

crossbar arrays in the input layer and one crossbar array in the 

output layer.   

The waveform of a typical input signal applied to the neural 

network is given in Fig. 6a. The amplitude of this pulse signal is 

set to the scaled data corresponding to the sampled iris flower. 

The signal in Fig. 6a is the first input of the sample shown in 

Table. 1. 

In order to train the circuit, we have extracted mathematical 

model of the circuit, that is all memristors are modelled by the 

differential equation in Eqs. (1-4). The subcircuits consisting of 

MOS transistors and Baluns (used for converting from 

differential signal to the single ended signal) are modelled with 

tanh function. The overall system model thus obtained is inserted 

to the Simulink Matlab and trained based on iris flower data set 

[22] using back propagation algorithm. 

 

Table.1 The simulation results of the neural network for 

three sample inputs. 

 Vi1 Vi2 Vi3 Vi4 V0, ideal V0 

Sample1 -0.556 0.250 -0.864 -0.917 -1.048 -1.13 

Sample2 -0.111 -0.167 0.390 0.417 0.727 0.8 

Sample3 0.333 -0.083 0.559 0.917 1.07 1.1 

 

 
(a) 

 
(b) 

 

Fig.6 a) Typical signal shown for Vi1=-0.556 V applied to 

neural network input b) The corresponding output signal  

(Vout=-1.13 V) 

 

5. Conclusions 
 

In this paper, the design of analog neural network with 

memristor crossbar arrays is considered. The required activation 

functions are realized using sub-circuits consisting of Baluns and 

CMOS transistors.  Iris data recognition application is used to test 

the performance of the proposed neural network. For this purpose, 

the back propagation algorithm is used in MATLAB environment   

and then obtained parameters are used in Cadence netlist. Thus, 

the performance of the proposed circuit is verified for the 

application of the iris data recognition. 
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