34 research outputs found

    Further characterization of changes in axial strain elastograms due to the presence of slippery tumor boundaries.

    Get PDF
    Elastography measures tissue strain, which can be interpreted under certain simplifying assumptions to be representative of the underlying stiffness distribution. This is useful in cancer diagnosis where tumors tend to have a different stiffness to healthy tissue and has also shown potential to provide indication of the degree of bonding at tumor-tissue boundaries, which is clinically useful because of its dependence on tumor pathology. We consider the changes in axial strain for the case of a symmetrical model undergoing uniaxial compression, studied by characterizing changes in tumor contrast transfer efficiency (CTE), inclusion to background strain contrast and strain contrast generated by slip motion, as a function of Young's modulus contrast and applied strain. We present results from a finite element simulation and an evaluation of these results using tissue-mimicking phantoms. The simulation results show that a discontinuity in displacement data at the tumor boundary, caused by the surrounding tissue slipping past the tumor, creates a halo of "pseudostrain" across the tumor boundary. Mobile tumors also appear stiffer on elastograms than adhered tumors, to the extent that tumors that have the same Young's modulus as the background may in fact be visible as low-strain regions, or those that are softer than the background may appear to be stiffer than the background. Tumor mobility also causes characteristic strain heterogeneity within the tumor, which exhibits low strain close to the slippery boundary and increasing strain toward the center of the tumor. These results were reproduced in phantom experiments. In addition, phantom experiments demonstrated that when fluid lubrication is present at the boundary, these effects become applied strain-dependent as well as modulus-dependent, in a systematic and characteristic manner. The knowledge generated by this study is expected to aid interpretation of clinical strain elastograms by helping to avoid misinterpretation as well as provide additional diagnostic criteria stated in the paper and stimulate further research into the application of elastography to tumor mobility assessment

    Ultrasound Tomography Evaluation of Breast Density: A Comparison With Noncontrast Magnetic Resonance Imaging.

    Get PDF
    Objectives Ultrasound tomography (UST) is an emerging whole-breast 3-dimensional imaging technique that obtains quantitative tomograms of speed of sound of the entire breast. The imaged parameter is the speed of sound which is used as a surrogate measure of density at each voxel and holds promise as a method to evaluate breast density without ionizing radiation. This study evaluated the technique of UST and compared whole-breast volume averaged speed of sound (VASS) with MR percent water content from noncontrast magnetic resonance imaging (MRI).Materials and methods Forty-three healthy female volunteers (median age, 40 years; range, 29-59 years) underwent bilateral breast UST and MRI using a 2-point Dixon technique. Reproducibility of VASS was evaluated using Bland-Altman analysis. Volume averaged speed of sound and MR percent water were evaluated and compared using Pearson correlation coefficient.Results The mean ± standard deviation VASS measurement was 1463 ± 29 m s (range, 1434-1542 m s). There was high similarity between right (1464 ± 30 m s) and left (1462 ± 28 m s) breasts (P = 0.113) (intraclass correlation coefficient, 0.98). Mean MR percent water content was 35.7% ± 14.7% (range, 13.2%-75.3%), with small but significant differences between right and left breasts (36.3% ± 14.9% and 35.1% ± 14.7%, respectively; P = 0.004). There was a very strong correlation between VASS and MR percent water density (r = 0.96, P < 0.0001).Conclusions Ultrasound tomography holds promise as a reliable and reproducible 3-dimensional technique to provide a surrogate measure of breast density and correlates strongly with MR percent water content

    Immunization of young heifers with staphylococcal immune evasion proteins before natural exposure to Staphylococcus aureus induces a humoral immune response in serum and milk

    Get PDF
    Background: Staphylococcus aureus, a leading cause of mastitis in dairy cattle, causes severe mastitis and/or chronic persistent infections with detrimental effects on the cows' wellbeing, lifespan and milk production. Despite years of research there is no effective vaccine against S. aureus mastitis. Boosting of non-protective pre-existing immunity to S. aureus, induced by natural exposure to S. aureus, by vaccination may interfere with vaccine efficacy. The aim was to assess whether experimental immunization of S. aureus naïve animals results in an immune response that differs from immunity following natural exposure to S. aureus. Results: First, to define the period during which calves are immunologically naïve for S. aureus, Efb, LukM, and whole-cell S. aureus specific serum antibodies were measured in a cohort of newborn calves by ELISA. Rising S. aureus specific antibodies indicated that from week 12 onward calves mounted an immune response to S. aureus due to natural exposure. Next, an experimental immunization trial was set up using 8-week-old heifer calves (n = 16), half of which were immunized with the immune evasion molecules Efb and LukM. Immunization was repeated after one year and before parturition and humoral and cellular immunity specific for Efb and LukM was determined throughout the study. Post-partum, antibody levels against LukM and EfB were significantly higher in serum, colostrum and milk in the experimentally immunized animals compared to animals naturally exposed to S. aureus. LukM specific IL17a responses were also significantly higher in the immunized cows post-partum. Conclusions: Experimental immunization with staphylococcal immune evasion molecules starting before natural exposure resulted in significantly higher antibody levels against Efb and LukM around parturition in serum as well as the site of infection, i.e. in colostrum and milk, compared to natural exposure to S. aureus. This study showed that it is practically feasible to vaccinate S. aureus naïve cattle and that experimental immunization induced a humoral immune response that differed from that after natural exposure only.</p

    In Vivo Response to Compression of 35 Breast Lesions Observed with a Two-Dimensional Locally Regularized Strain Estimation Method

    No full text
    International audienceThe objective of this study was to assess the in vivo performance of our 2-D locally regularized strain estimation method with 35 breast lesions, mainly cysts, fibroadenomas and carcinomas. The specific 2-D deformation model used, as well as the method's adaptability, led to an algorithm that is able to track tissue motion from radiofrequency ultrasound images acquired in clinical conditions. Particular attention was paid to strain estimation reliability, implying analysis of the mean normalized correlation coefficient maps. For all lesions examined, the results indicated that strain image interpretation, as well as its comparison with B-mode data, should take into account the information provided by the mean normalized correlation coefficient map. Different trends were observed in the tissue response to compression. In particular, carcinomas appeared larger in strain images than in B-mode images, resulting in a mean strain/B-mode lesion area ratio of 2.59 ± 1.36. In comparison, the same ratio was assessed as 1.04 ± 0.26 for fibroadenomas. These results are in agreement with those of previous studies, and confirm the interest of a more thorough consideration of size difference as one parameter discriminating between malignant and benign lesions
    corecore