119 research outputs found

    The physical origin of the Fresnel drag of light by a moving dielectric medium

    Full text link
    We present a new derivation of the Fresnel-Fizeau formula for the drag of light by a moving medium using a simple perturbation approach. We focus particulary on the physical origin of the phenomenon and we show that it is very similar to the Doppler-Fizeau effect. We prove that this effect is, in its essential part, independent of the theory of relativity. The possibility of applications in other domains of physics is considered.Comment: accepted for publication in EPJB (the European Journal of Physics B

    Chiral molecules split light: Reflection and refraction in a chiral liquid

    Get PDF
    A light beam changes direction as it enters a liquid at an angle from another medium, such as air. Should the liquid contain molecules that lack mirror symmetry, then it has been predicted by Fresnel that the light beam will not only change direction, but will actually split into two separate beams with a small difference in the respective angles of refraction. Here we report the observation of this phenomenon. We also demonstrate that the angle of reflection does not equal the angle of incidence in a chiral medium. Unlike conventional optical rotation, which depends on the path-length through the sample, the reported reflection and refraction phenomena arise within a few wavelengths at the interface and thereby suggest a new approach to polarimetry that can be used in microfluidic volumes

    Arago (1810): the first experimental result against the ether

    Get PDF
    95 years before Special Relativity was born, Arago attempted to detect the absolute motion of the Earth by measuring the deflection of starlight passing through a prism fixed to the Earth. The null result of this experiment gave rise to the Fresnel's hypothesis of an ether partly dragged by a moving substance. In the context of Einstein's Relativity, the sole frame which is privileged in Arago's experiment is the proper frame of the prism, and the null result only says that Snell's law is valid in that frame. We revisit the history of this premature first evidence against the ether theory and calculate the Fresnel's dragging coefficient by applying the Huygens' construction in the frame of the prism. We expose the dissimilar treatment received by the ray and the wave front as an unavoidable consequence of the classical notions of space and time.Comment: 16 pages. To appear in European Journal of Physic

    Étude de pollution atmosphérique en Afrique Sub-Saharienne : Cas de Cotonou (Bénin) : Caractérisation physicochimique des matières particulaires d'origine urbaine et impact toxicologique sur des cellules épithéliales bronchiques humaines (BEAS-2B) cultivées in vitro

    Get PDF
    Air pollution and its adverse health effects have shown a growing interest in developing countries. This study deals with this subject and is one of the first conducted in African countries, particularly in Benin. Our results showed that the quality of gasoline used in cotonou was poor, characterized by the absence of additive and a high concentration of benzene. Thus, it could be responsible for the degradation of the city air quality. Therefore, particulate matter samples (PM₂․₅ and PM>₂․₅) were collected in St Michel neighborhood at Cotonou and results showed very high levels of particles in the ambient air. Physicochemical characterization of these particles revealed a presence of various chemicals compounds (ions, metals, VOCs, paraffins, PAHs, ect.) in higher proportion in PM₂․₅ than PM>₂․₅. The respiratory system, the main way of exposure to these airborne particles, was investigated through an in vitro study assessing the toxic potential of PM on human bronchial epithelial cells (BEAS-2B). It has been demonstrated that the two types of particules have cytotoxic properties and ability to induce gene expression of organic compounds metabolizing enzymes and to generate oxidative stress. These particles have triggered the inflammatory process through the induction of gene expression and protein secretion of cytokines, and changes in the arachidonic acid pathway (leukotrienes, prostaglandin, and thromboxane). Finally, comparative approach for PM₂․₅ sampled in three West African cities highlighted the closeness of particles characteristics in Benin, Côte d'Ivoire and Senegal, and a significant contribution of road traffic emissions in the air pollution.La pollution de l'environnement, et particulièrement la pollution atmosphérique et son possible impact sur la santé humaine, suscite un intérêt grandissant dans les pays en voie de développement. Ce travail de thèse s'inscrit dans cette thématique et constitue une étude pionnière en Afrique, et au Bénin plus particulièrement. Nos résultats ont montré que l'essence utilisée à Cotonou était de piètre qualité, caractérisée par l'absence d'additifs et par une forte concentration en benzène, et pouvait être à l'origine de la dégradation de la qualité de l'air de la ville. De même, l'analyse d'échantillons de particules (PM₂․₅ et PM>₂․₅) prélevés dans le quartier de St Michel à Cotonou, a mis en exergue un taux anormalement élevé de particules en suspension dans l'air. La caractérisation physicochimique de ces particules a montré la présence d'un cocktail de composés chimiques (ions, métaux, COVs, paraffines, HAPs, etc.), en proportion plus élevées dans les particules fines PM₂․₅. L'appareil respiratoire constituant la principale voie d'exposition de l'Homme à ces particules atmosphériques, leur potentiel toxique a été évalué au travers d'une étude in vitro menée sur des cellules épithéliales bronchiques humaines (BEAS-2B). Il a été ainsi démontré les propriétés cytotoxiques des deux échantillons de particules ainsi que leur capacité à induire l'expression génique des enzymes de métabolisation des composés organiques et à générer un stress oxydatif. Le déclenchement du processus inflammatoire via l'induction de l'expression génique et la sécrétion protéique de cytokines et l'apparition de modifications dans la voie de l'acide arachidonique (leucotriènes, prostaglandine, thromboxane) ont été notés. Enfin l'approche comparative des PM₂․₅ prélevées au niveau de trois villes d'Afrique de l'Ouest a permis de mettre en évidence des caractéristiques proches au Bénin, en Côte d'Ivoire et au Sénégal et la contribution des émissions du trafic routier dans la pollution de l'air

    Observation of light dragging in rubidium vapor cell

    Full text link
    We report on the experimental demonstration of light dragging effect due to atomic motion in a rubidium vapor cell. We found that the minimum group velocity is achieved for light red-shifted from the center of the atomic resonance, and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev. Lett. {\bf 86}, 628 (2001)].Comment: 4 pages 4 figures, submitted to PR

    A Technical Introduction to Transmission Electron Microscopy for Soft-Matter:Imaging, Possibilities, Choices, and Technical Developments

    Get PDF
    With a significant role in material sciences, physics, (soft matter) chemistry, and biology, the transmission electron microscope is one of the most widely applied structural analysis tool to date. It has the power to visualize almost everything from the micrometer to the angstrom scale. Technical developments keep opening doors to new fields of research by improving aspects such as sample preservation, detector performance, computational power, and workflow automation. For more than half a century, and continuing into the future, electron microscopy has been, and is, a cornerstone methodology in science. Herein, the technical considerations of imaging with electrons in terms of optics, technology, samples and processing, and targeted soft materials are summarized. Furthermore, recent advances and their potential for application to soft matter chemistry are highlighted

    Spin-Orbit Twisted Spin Waves : Group Velocity Control

    Get PDF
    We present a theoretical and experimental study of the interplay between spin-orbit coupling (SOC), Coulomb interaction, and motion of conduction electrons in a magnetized two-dimensional electron gas. Via a transformation of the many-body Hamiltonian we introduce the concept of spin-orbit twisted spin waves, whose energy dispersions and damping rates are obtained by a simple wave-vector shift of the spin waves without SOC. These theoretical predictions are validated by Raman scattering measurements. With optical gating of the density, we vary the strength of the SOC to alter the group velocity of the spin wave. The findings presented here differ from that of spin systems subject to the Dzyaloshinskii-Moriya interaction. Our results pave the way for novel applications in spin-wave routing devices and for the realization of lenses for spin waves

    "Fresnel light drag in a coherently driven moving medium"

    Get PDF
    We theoretically study how the phase of a light plane wave propagating in a resonant medium under electromagnetically induced transparency (EIT) is affected by the uniform motion of the medium. For cuprous oxide (Cu2O), where EIT can be implemented through a typical pump-probe configuration, the resonant probe beam experiences a phase shift (Fresnel-Fizeau effect) that may vary over a wide range of values, positive or negative, and even vanishing, due to the combined effects of the strong frequency dispersion and anisotropy both induced by the pump. The use of such a coherently driven dragging medium may improve by at least 1 order of magnitude the sensitivity at low velocity in optical drag experiments

    Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms

    Full text link
    We develop a theory of Tannakian Galois groups for t-motives and relate this to the theory of Frobenius semilinear difference equations. We show that the transcendence degree of the period matrix associated to a given t-motive is equal to the dimension of its Galois group. Using this result we prove that Carlitz logarithms of algebraic functions that are linearly independent over the rational function field are algebraically independent.Comment: 39 page

    Relativistic Effects of Light in Moving Media with Extremely Low Group Velocity

    Full text link
    A moving dielectric medium acts as an effective gravitational field on light. One can use media with extremely low group velocities [Lene Vestergaard Hau et al., Nature 397, 594 (1999)] to create dielectric analogs of astronomical effects on Earth. In particular, a vortex flow imprints a long-ranging topological effect on incident light and can behave like an optical black hole.Comment: Physical Review Letters (accepted
    • …
    corecore