37 research outputs found

    Identification of Milk Component in Ancient Food Residue by Proteomics

    Get PDF
    Proteomic approaches based on mass spectrometry have been recently used in archaeological and art researches, generating promising results for protein identification. Little information is known about eastward spread and eastern limits of prehistoric milking in eastern Eurasia.In this paper, an ancient visible food remain from Subeixi Cemeteries (cal. 500 to 300 years BC) of the Turpan Basin in Xinjiang, China, preliminarily determined containing 0.432 mg/kg cattle casein with ELISA, was analyzed by using an improved method based on liquid chromatography (LC) coupled with MALDI-TOF/TOF-MS to further identify protein origin. The specific sequence of bovine casein and the homology sequence of goat/sheep casein were identified.The existence of milk component in ancient food implies goat/sheep and cattle milking in ancient Subeixi region, the furthest eastern location of prehistoric milking in the Old World up to date. It is envisioned that this work provides a new approach for ancient residue analysis and other archaeometry field

    The analysis of European lacquer : optimization of thermochemolysis temperature of natural resins

    Get PDF
    In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 degrees C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 degrees C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 degrees C is too high for both groups, 350 degrees C is best for the first, and 550 degrees C for the second. Fixed temperatures of 480 degrees C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 degrees C showed best compounds formed at high temperatures

    Py-GC/MS applied to the analysis of synthetic organic pigments: characterization and identification in paint samples

    Get PDF
    A collection of 76 synthetic organic pigments was analysed using pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). The purpose of this work was to expand the knowledge on synthetic pigments and to assess characteristic pyrolysis products that could help in the identification of these pigments in paint samples. We analysed several classes of synthetic pigments not previously reported as being analysed by this technique: some metal complexes, ÎČ-naphthol pigment lakes, BONA pigment lakes, disazopyrazolone, triarylcarbonium, dioxazine, anthraquinone, indanthrone, isoindoline and thioindigo classes. We also report for the first time the Py-GC/MS analysis of a number of naphthol AS, benzimidazolone, phthalocyanine and perylene pigments and other miscellaneous pigments including pigments with unpublished chemical structure. We successfully used the Py-GC/MS technique for the analysis of paints by artists Clyfford Still and Jackson Pollock to identify the synthetic organic pigments and the binding media

    Explore before you restore: Incorporating complex systems thinking in ecosystem restoration

    Get PDF
    The global movement for ecosystem restoration has gained momentum in response to the Bonn Challenge (2010) and the UN Decade on Ecosystem Restoration (UNDER, 2021–2030). While several science-based guidelines exist to aid in achieving successful restoration outcomes, significant variation remains in the outcomes of restoration projects. Some of this disparity can be attributed to unexpected responses of ecosystem components to planned interventions.Given the complex nature of ecosystems, we propose that concepts from Complex Systems Science (CSS) that are linked to non-linearity, such as regime shifts, ecological resilience and ecological feedbacks, should be employed to help explain this variation in restoration outcomes from an ecological perspective.Our framework, Explore Before You Restore, illustrates how these concepts impact restoration outcomes by influencing degradation and recovery trajectories. Additionally, we propose incorporating CSS concepts into the typical restoration project cycle through a CSS assessment phase and suggest that the need for such assessment is explicitly included in the guidelines to improve restoration outcomes.To facilitate this inclusion and make it workable by practitioners, we describe indicators and methods available for restoration teams to answer key questions that should make up such CSS assessment. In doing so, we identify key outstanding science and policy tasks that are needed to further operationalize CSS assessment in restoration.Synthesis and applications. By illustrating how key Complex Systems Science (CSS) concepts linked to non-linear threshold behaviour can impact restoration outcomes through influencing recovery trajectories, our framework Explore Before You Restore demonstrates the need to incorporate Complex Systems thinking in ecosystem restoration. We argue that inclusion of CSS assessment into restoration project cycles, and more broadly, into international restoration guidelines, may significantly improve restoration outcomes

    HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives

    Get PDF
    The characterisation of atelier materials and of the historical commercial formulation of paint materials has recently gained new interest in the field of conservation science applied to modern and contemporary art, since modern paint materials are subjected to peculiar and often unpredictable degradation and fading processes. Assessing the composition of the original materials purchased by artists can guide not only their identification in works of art, but also their restoration and conservation. Advances in characterisation methods and models for data interpretation are particularly important in studying organic coloring materials in the transition period corresponding to the late 19th-early 20th century, when many such variants or combinations were hypothetically possible in their formulations. There is thus a need for reliable databases of materials introduced in that period and for gaining chemical knowledge at a molecular level related to modern organic pigments, by state-of-the-art protocols. This paper reports on the results of a study on 44 samples of historical colorants in powder and paint tubes, containing both lake pigments and synthetic organic pigments dating from 1890 to 1926. The samples were collected at the Lefranc Archive in Le Mans (France) as a part of Project Futurahma "From Futurism to Classicism (1910-1922). Research, Art History and Material Analysis", (FIRB2012, Italian Ministry of University and Research), and were investigated using an analytical approach based on chromatographic and mass spectrometric techniques. The focus of the chemical analyses was to reveal the composition of the historical organic lake pigments including minor components, to discriminate between different recipes for the extraction of chromophore-containing molecules from the raw materials, and ultimately to distinguish between different formulations and recipes. High performance liquid chromatography (HPLC) with diode array detector (DAD) or electrospray-Quadrupole-Time of Flight tandem mass spectrometry detector (ESI-Q-ToF) were chosen given their considerable capacity to identify such complex and widespread organic materials. Although the inorganic components of the pigments were not taken into account in this survey, the specific molecular profiles provided invaluable information on the extraction procedures or synthetic strategy followed by the different producers, at different times. For instance, the use of Kopp's purpurin and garancine was highlighted, and synthetic by-products were identified. The results provided evidence that the addition of synthetic organic pigments to paint mixtures started from 1910 onwards, but they also suggest that in the formulation of high quality (surfin) colorants, natural products were still preferred. Moreover, in one of the samples the use of murexide as the colouring material was confirmed. This paper presents the first systematic and comprehensive survey on organic lakes and pigments belonging to an historical archive, by both HPLC-DAD and HPLC-ESI-Q-ToF. Specific by-products of synthetic production of pigments, which can act as specific molecular markers for dating or locating a work of art, were also identified for the first time

    Explore before you restore: Incorporating complex systems thinking in ecosystem restoration

    Get PDF
    Abstract The global movement for ecosystem restoration has gained momentum in response to the Bonn Challenge (2010) and the UN Decade on Ecosystem Restoration (UNDER, 2021–2030). While several science‐based guidelines exist to aid in achieving successful restoration outcomes, significant variation remains in the outcomes of restoration projects. Some of this disparity can be attributed to unexpected responses of ecosystem components to planned interventions. Given the complex nature of ecosystems, we propose that concepts from Complex Systems Science (CSS) that are linked to non‐linearity, such as regime shifts, ecological resilience and ecological feedbacks, should be employed to help explain this variation in restoration outcomes from an ecological perspective. Our framework, Explore Before You Restore, illustrates how these concepts impact restoration outcomes by influencing degradation and recovery trajectories. Additionally, we propose incorporating CSS concepts into the typical restoration project cycle through a CSS assessment phase and suggest that the need for such assessment is explicitly included in the guidelines to improve restoration outcomes. To facilitate this inclusion and make it workable by practitioners, we describe indicators and methods available for restoration teams to answer key questions that should make up such CSS assessment. In doing so, we identify key outstanding science and policy tasks that are needed to further operationalize CSS assessment in restoration. Synthesis and applications. By illustrating how key Complex Systems Science (CSS) concepts linked to non‐linear threshold behaviour can impact restoration outcomes through influencing recovery trajectories, our framework Explore Before You Restore demonstrates the need to incorporate Complex Systems thinking in ecosystem restoration. We argue that inclusion of CSS assessment into restoration project cycles, and more broadly, into international restoration guidelines, may significantly improve restoration outcomes. </jats:p

    Tropical and subtropical Asia's valued tree species under threat

    Get PDF
    Tree diversity in Asia's tropical and subtropical forests is central to nature-based solutions. Species vulnerability to multiple threats, which affects the provision of ecosystem services, is poorly understood. We conducted a region-wide, spatially explicit vulnerability assessment (including overexploitation, fire, overgrazing, habitat conversion, and climate change) of 63 socio-economically important tree species selected from national priority lists and validated by an expert network representing 20 countries. Overall, 74% of the most important areas for conservation of these trees fall outside of protected areas, with species severely threatened across 47% of their native ranges. The most imminent threats are overexploitation and habitat conversion, with populations being severely threatened in an average of 24% and 16% of their distribution areas. Optimistically, our results predict relatively limited overall climate change impacts, however, some of the study species are likely to lose more than 15% of their habitat by 2050 because of climate change. We pinpoint specific natural forest areas in Malaysia and Indonesia (Borneo) as hotspots for on-site conservation of forest genetic resources, more than 82% of which do not currently fall within designated protected areas. We also identify degraded lands in Indonesia (Sumatra) as priorities for restoration where planting or assisted natural regeneration will help maintain these species into the future, while croplands in Southern India are highlighted as potentially important agroforestry options. Our study highlights the need for regionally coordinated action for effective conservation and restoration
    corecore