1,646 research outputs found
Chronic low back pain, chronic disability at work, chronic management issues.
Low-back pain (LBP) stands out as the leading musculoskeletal disorder because it is both highly prevalent and the disability with which people live for the greatest number of years (1, 2). Reaching a peak between the ages of 30–50 years, LBP affects a population at a time of career advancement (3, 4). Back pain is the most expensive disease in terms of indirect costs due to sickness absence and work disability. Indirect (or productivity) costs contribute 93% to total costs, illustrating the importance of the consequences of the disease for work performance (5, 6). On a personal level, low self-motivation and self-confidence make it harder to initiate the return-to-work (RTW) process, especially when problems at work are related to the reason for sick leave (7, 8). At the workplace level, colleagues take over the tasks of the worker on sick leave, work piles up, or another worker is hired to take over the tasks. Timely RTW is thus of great benefit for both injured workers and their employers. [...
Magnetic Fluctuations and Correlations in MnSi - Evidence for a Skyrmion Spin Liquid Phase
We present a comprehensive analysis of high resolution neutron scattering
data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which
confirm the first order nature of the helical transition and reveal the
existence of a new spin liquid skyrmion phase. Similar to the blue phases of
liquid crystals this phase appears in a very narrow temperature range between
the low temperature helical and the high temperature paramagnetic phases.Comment: 11 pages, 16 figure
Time-Dependent MHD Shocks and Line Emission: The Case of the DG Tau Jet
The line emission from a growing number of Herbig-Haro jets can be observed
and resolved at angular distances smaller than a few arcseconds from the
central source. The interpretation of this emission is problematic, since the
simplest model of a cooling jet cannot sustain it. It has been suggested that
what one actually observes are shocked regions with a filling factor of . In this framework, up to now, comparisons with observations have been
based on stationary shock models. Here we introduce for the first time the
self-consistent dynamics of such shocks and we show that considering their
properties at different times, i.e. locations, we can reproduce observational
data of the DG Tau microjet. In particular, we can interpret the spatial
behavior of the [SII]6716/6731 and [NII]/[OI]6583/6300 line intensity ratios
adopting a set of physical parameters that yield values of mass loss rates and
magnetic fields consistent with previous estimates. We also obtain the values
of the mean ionization fraction and electron density along the jet, compare
these values with the ones derived from observations using the sulfur doublet
to constrain the electron density (e.g. Bacciotti et al. 1995).Comment: 6 pages, 3 figure
La lombalgie chez les adultes consultant en médecine générale : fréquence, caractéristiques sociodémographiques et résultats de consultation associés
HST NICMOS Images of the HH 7/11 Outflow in NGC1333
We present near infrared images in H2 at 2.12um of the HH 7/11 outflow and
its driving source SVS 13 taken with HST NICMOS 2 camera, as well as archival
Ha and [SII] optical images obtained with the WFPC2 camera. The NICMOS high
angular resolution observations confirm the nature of a small scale jet arising
from SVS 13, and resolve a structure in the HH 7 working surface that could
correspond to Mach disk H2 emission. The H2 jet has a length of 430 AU (at a
distance of 350 pc), an aspect ratio of 2.2 and morphologically resembles the
well known DG Tau optical micro-jet. The kinematical age of the jet (approx. 10
yr) coincides with the time since the last outburst from SVS 13. If we
interpret the observed H2 flux density with molecular shock models of 20-30
km/s, then the jet has a density as high as 1.e+5 cc. The presence of this
small jet warns that contamination by H2 emission from an outflow in studies
searching for H2 in circumstellar disks is possible. At the working surface,
the smooth H2 morphology of the HH 7 bowshock indicates that the magnetic field
is strong, playing a major role in stabilizing this structure. The H2 flux
density of the Mach disk, when compared with that of the bowshock, suggests
that its emission is produced by molecular shocks of less than 20 km/s. The
WFPC2 optical images display several of the global features already inferred
from groundbased observations, like the filamentary structure in HH 8 and HH
10, which suggests a strong interaction of the outflow with its cavity. The H2
jet is not detected in {SII] or Ha, however, there is a small clump at approx.
5'' NE of SVS 13 that could be depicting the presence either of a different
outburst event or the north edge of the outflow cavity.Comment: 13 pages, 5 figures (JPEGs
PdBI sub-arcsecond study of the SiO microjet in HH212 - Origin and collimation of Class 0 jets
The bipolar HH 212 outflow has been mapped in SiO using the extended
configuration of the Plateau de Bure Interferometer (PdBI), revealing a highly
collimated SiO jet closely associated with the H2 jet component. We study at
unprecedented resolution (0.34" across the jet axis) the properties of the
innermost SiO ``microjet'' within 1000 AU of this young Class 0 source, to
compare it with atomic microjets from more evolved sources and to constrain its
origin. The SiO channel maps are used to investigate the microjet collimation
and velocity structure. A large velocity gradient analysis is applied to SiO
(2-1), (5-4) and (8-7) data from the PdBI and the Submillimeter Array to
constrain the SiO opacity and abundance. The HH212 Class 0 microjet shows
striking similarities in collimation and energetic budget with atomic microjets
from T Tauri sources. Furthermore, the SiO lines appear optically thick, unlike
what is generally assumed. We infer T(kin) ~ 50-500 K and an SiO/H2 abundance
greater than 4 10(-8)-6 10(-5) for n(H2) = 10(7)-10(5) cm(-3), i.e. 0.05-90% of
the elemental silicon. This similar jet width, regardless of the presence of a
dense envelope, definitely rules out jet collimation by external pressure, and
favors a common MHD self-collimation (and possibly acceleration) process at all
stages of star formation. We propose that the more abundant SiO in Class 0 jets
could mainly result from rapid (less than 25 yrs) molecular synthesis at high
jet densities
Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation
Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused a rough endosperm seed phenotype with reduced embryo oil and endosperm starch. Genetic translocation experiments showed that pgd3 has separate, essential roles in both endosperm and embryo development. Endosperm metabolite profiling experiments indicated that pgd3 shifts redox-related metabolites and increases reducing sugars similar to starch-biosynthetis mutants. Heavy isotope-labelling experiments indicates that carbon flux into starch is altered in pgd3 mutants. Labelling experiments with a loss of cytosolic 6PGDH did not affect flux into starch. These results support the known role for plastid-localized oxPPP in oil synthesis and argue that amyloplast-localized oxPPP reactions are integral to endosperm starch accumulation in maize kernels
Numerical simulations of radiative magnetized Herbig-Haro jets: the influence of pre-ionization from X-rays on emission lines
We investigate supersonic, axisymmetric magnetohydrodynamic (MHD) jets with a
time-dependent injection velocity by numerical simulations with the PLUTO code.
Using a comprehensive set of parameters, we explore different jet
configurations in the attempt to construct models that can be directly compared
to observational data of microjets. In particular, we focus our attention on
the emitting properties of traveling knots and construct, at the same time,
accurate line intensity ratios and surface brightness maps. Direct comparison
of the resulting brightness and line intensity ratios distributions with
observational data of microjets shows that a closer match can be obtained only
when the jet material is pre-ionized to some degree. A very likely source for a
pre-ionized medium is photoionization by X-ray flux coming from the central
object.Comment: Accepted for publication in Ap
Hernie discale opérée (HDO), quels sont les secteurs et professions à cibler dans les campagnes de prévention ?
- …
