1,646 research outputs found

    Chronic low back pain, chronic disability at work, chronic management issues.

    Get PDF
    Low-back  pain  (LBP)  stands  out  as  the  leading  musculoskeletal  disorder  because  it  is  both  highly prevalent and the disability with which people live for the greatest number of years (1, 2). Reaching a peak between the ages of 30–50 years, LBP affects a population at a time of career advancement (3, 4). Back pain is the most expensive disease in terms of indirect costs due to sickness absence and work disability. Indirect (or productivity) costs contribute 93% to total costs, illustrating the importance of the consequences of the disease for work performance (5, 6). On a personal level, low self-motivation and self-confidence make it harder to initiate the return-to-work (RTW) process, especially when problems at work are related to the reason for sick leave (7, 8). At the workplace level, colleagues take over the tasks of the worker on sick leave, work piles up, or another worker is hired to take over the tasks. Timely RTW is thus of great benefit for both injured workers and their employers. [...

    La industria maquiladora de exportacion en la zona metropolitana de Monterrey

    Get PDF

    Magnetic Fluctuations and Correlations in MnSi - Evidence for a Skyrmion Spin Liquid Phase

    Full text link
    We present a comprehensive analysis of high resolution neutron scattering data involving Neutron Spin Echo spectroscopy and Spherical Polarimetry which confirm the first order nature of the helical transition and reveal the existence of a new spin liquid skyrmion phase. Similar to the blue phases of liquid crystals this phase appears in a very narrow temperature range between the low temperature helical and the high temperature paramagnetic phases.Comment: 11 pages, 16 figure

    Time-Dependent MHD Shocks and Line Emission: The Case of the DG Tau Jet

    Get PDF
    The line emission from a growing number of Herbig-Haro jets can be observed and resolved at angular distances smaller than a few arcseconds from the central source. The interpretation of this emission is problematic, since the simplest model of a cooling jet cannot sustain it. It has been suggested that what one actually observes are shocked regions with a filling factor of 1\sim 1%. In this framework, up to now, comparisons with observations have been based on stationary shock models. Here we introduce for the first time the self-consistent dynamics of such shocks and we show that considering their properties at different times, i.e. locations, we can reproduce observational data of the DG Tau microjet. In particular, we can interpret the spatial behavior of the [SII]6716/6731 and [NII]/[OI]6583/6300 line intensity ratios adopting a set of physical parameters that yield values of mass loss rates and magnetic fields consistent with previous estimates. We also obtain the values of the mean ionization fraction and electron density along the jet, compare these values with the ones derived from observations using the sulfur doublet to constrain the electron density (e.g. Bacciotti et al. 1995).Comment: 6 pages, 3 figure

    HST NICMOS Images of the HH 7/11 Outflow in NGC1333

    Full text link
    We present near infrared images in H2 at 2.12um of the HH 7/11 outflow and its driving source SVS 13 taken with HST NICMOS 2 camera, as well as archival Ha and [SII] optical images obtained with the WFPC2 camera. The NICMOS high angular resolution observations confirm the nature of a small scale jet arising from SVS 13, and resolve a structure in the HH 7 working surface that could correspond to Mach disk H2 emission. The H2 jet has a length of 430 AU (at a distance of 350 pc), an aspect ratio of 2.2 and morphologically resembles the well known DG Tau optical micro-jet. The kinematical age of the jet (approx. 10 yr) coincides with the time since the last outburst from SVS 13. If we interpret the observed H2 flux density with molecular shock models of 20-30 km/s, then the jet has a density as high as 1.e+5 cc. The presence of this small jet warns that contamination by H2 emission from an outflow in studies searching for H2 in circumstellar disks is possible. At the working surface, the smooth H2 morphology of the HH 7 bowshock indicates that the magnetic field is strong, playing a major role in stabilizing this structure. The H2 flux density of the Mach disk, when compared with that of the bowshock, suggests that its emission is produced by molecular shocks of less than 20 km/s. The WFPC2 optical images display several of the global features already inferred from groundbased observations, like the filamentary structure in HH 8 and HH 10, which suggests a strong interaction of the outflow with its cavity. The H2 jet is not detected in {SII] or Ha, however, there is a small clump at approx. 5'' NE of SVS 13 that could be depicting the presence either of a different outburst event or the north edge of the outflow cavity.Comment: 13 pages, 5 figures (JPEGs

    PdBI sub-arcsecond study of the SiO microjet in HH212 - Origin and collimation of Class 0 jets

    Full text link
    The bipolar HH 212 outflow has been mapped in SiO using the extended configuration of the Plateau de Bure Interferometer (PdBI), revealing a highly collimated SiO jet closely associated with the H2 jet component. We study at unprecedented resolution (0.34" across the jet axis) the properties of the innermost SiO ``microjet'' within 1000 AU of this young Class 0 source, to compare it with atomic microjets from more evolved sources and to constrain its origin. The SiO channel maps are used to investigate the microjet collimation and velocity structure. A large velocity gradient analysis is applied to SiO (2-1), (5-4) and (8-7) data from the PdBI and the Submillimeter Array to constrain the SiO opacity and abundance. The HH212 Class 0 microjet shows striking similarities in collimation and energetic budget with atomic microjets from T Tauri sources. Furthermore, the SiO lines appear optically thick, unlike what is generally assumed. We infer T(kin) ~ 50-500 K and an SiO/H2 abundance greater than 4 10(-8)-6 10(-5) for n(H2) = 10(7)-10(5) cm(-3), i.e. 0.05-90% of the elemental silicon. This similar jet width, regardless of the presence of a dense envelope, definitely rules out jet collimation by external pressure, and favors a common MHD self-collimation (and possibly acceleration) process at all stages of star formation. We propose that the more abundant SiO in Class 0 jets could mainly result from rapid (less than 25 yrs) molecular synthesis at high jet densities

    Chloroplast-localized 6-phosphogluconate dehydrogenase is critical for maize endosperm starch accumulation

    Get PDF
    Plants have duplicate versions of the oxidative pentose phosphate pathway (oxPPP) enzymes with a subset localized to the chloroplast. The chloroplast oxPPP provides NADPH and pentose sugars for multiple metabolic pathways. This study identified two loss-of-function alleles of the Zea mays (maize) chloroplast-localized oxPPP enzyme 6-phosphogluconate dehydrogenase (6PGDH). These mutations caused a rough endosperm seed phenotype with reduced embryo oil and endosperm starch. Genetic translocation experiments showed that pgd3 has separate, essential roles in both endosperm and embryo development. Endosperm metabolite profiling experiments indicated that pgd3 shifts redox-related metabolites and increases reducing sugars similar to starch-biosynthetis mutants. Heavy isotope-labelling experiments indicates that carbon flux into starch is altered in pgd3 mutants. Labelling experiments with a loss of cytosolic 6PGDH did not affect flux into starch. These results support the known role for plastid-localized oxPPP in oil synthesis and argue that amyloplast-localized oxPPP reactions are integral to endosperm starch accumulation in maize kernels

    Numerical simulations of radiative magnetized Herbig-Haro jets: the influence of pre-ionization from X-rays on emission lines

    Get PDF
    We investigate supersonic, axisymmetric magnetohydrodynamic (MHD) jets with a time-dependent injection velocity by numerical simulations with the PLUTO code. Using a comprehensive set of parameters, we explore different jet configurations in the attempt to construct models that can be directly compared to observational data of microjets. In particular, we focus our attention on the emitting properties of traveling knots and construct, at the same time, accurate line intensity ratios and surface brightness maps. Direct comparison of the resulting brightness and line intensity ratios distributions with observational data of microjets shows that a closer match can be obtained only when the jet material is pre-ionized to some degree. A very likely source for a pre-ionized medium is photoionization by X-ray flux coming from the central object.Comment: Accepted for publication in Ap
    corecore