390 research outputs found

    Glutamate induces autophagy via the two-pore channels in neural cells

    Get PDF
    NAADP (nicotinic acid adenine dinucleotide phosphate) has been proposed as a second messenger for glutamate in neuronal and glial cells via the activation of the lysosomal Ca2+ channels TPC1 and TPC2. However, the activities of glutamate that are mediated by NAADP remain unclear. In this study, we evaluated the effect of glutamate on autophagy in astrocytes at physiological, non-toxic concentration. We found that glutamate induces autophagy at similar extent as NAADP. By contrast, the NAADP antagonist NED-19 or SiRNA-mediated inhibition of TPC1/2 decreases autophagy induced by glutamate, confirming a role for NAADP in this pathway. The involvement of TPC1/2 in glutamate-induced autophagy was also confirmed in SHSY5Y neuroblastoma cells. Finally, we show that glutamate leads to a NAADP-dependent activation of AMPK, which is required for autophagy induction, while mTOR activity is not affected by this treatment. Taken together, our results indicate that glutamate stimulates autophagy via NAADP/TPC/AMPK axis, providing new insights of how Ca2+ signalling glutamate-mediated can control the cell metabolism in the central nervous system

    Molluscicide Effect of Sapindus saponaria Fruit on Galba cubensis, an Intermediate Host of Fasciolosis in Cuba

    Get PDF
    Galba cubensis is the main intermediate host of Fasciola hepatica in Cuba. The aim of this paper was to demonstrate the molluscicide effect of Sapindus saponaria L. on Galba cubensis in laboratory conditions, in order to recommend this plant for ecological control of this snail. Different concentrations of the hydroalcoholic extract of six-month old S. saponaria pericarp were tested on G. cubensis individuals, based on the methodology of the World Health Organization. The concentration gradient was used to determine LC50 and LC90, which then were tested to estimate the heartbeat frequency of these mollusks. The molluscicide effect of the plant extract was considerable (P≀0.01; R2=60.6), with concentration-dependent mortality and a drop of heartbeat frequency. Significant differences were observed between LC50=39.8 mg/L and LC90=67.9mg/L, in the test to lower heartbeat frequency (P≀0.01), and between LC90 and the control group (P≀0.01), but not between the control group and LC50 and (P=0.24). Molluscicide activity in the plant material was still present after six months of application, which was an important fact to recommend this plant as a candidate to control intermediate hosts of Fasciolosis in our region.Galba cubensis is the main intermediate host of Fasciola hepatica in Cuba. The aim of this paper was to demonstrate the molluscicide effect of Sapindus saponaria L. on Galba cubensis in laboratory conditions, in order to recommend this plant for ecological control of this snail. Different concentrations of the hydroalcoholic extract of six-month old S. saponaria pericarp were tested on G. cubensis individuals, based on the methodology of the World Health Organization. The concentration gradient was used to determine LC50 and LC90, which then were tested to estimate the heartbeat frequency of these mollusks. The molluscicide effect of the plant extract was considerable (P≀0.01; R2=60.6), with concentration-dependent mortality and a drop of heartbeat frequency. Significant differences were observed between LC50=39.8 mg/L and LC90=67.9mg/L, in the test to lower heartbeat frequency (P≀0.01), and between LC90 and the control group (P≀0.01), but not between the control group and LC50 and (P=0.24). Molluscicide activity in the plant material was still present after six months of application, which was an important fact to recommend this plant as a candidate to control intermediate hosts of Fasciolosis in our region

    AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1

    Get PDF
    Damaged mitochondria are eliminated by mitophagy, a selective form of autophagy whose dysfunction associates with neurodegenerative diseases. PINK1, PARKIN and p62/SQTMS1 have been shown to regulate mitophagy, leaving hitherto ill-defined the contribution by key players in 'general' autophagy. In basal conditions, a pool of AMBRA1 - an upstream autophagy regulator and a PARKIN interactor - is present at the mitochondria, where its pro-autophagic activity is inhibited by Bcl-2. Here we show that, upon mitophagy induction, AMBRA1 binds the autophagosome adapter LC3 through a LIR (LC3 interacting region) motif, this interaction being crucial for regulating both canonical PARKIN-dependent and -independent mitochondrial clearance. Moreover, forcing AMBRA1 localization to the outer mitochondrial membrane unleashes a massive PARKIN- and p62-independent but LC3-dependent mitophagy. These results highlight a novel role for AMBRA1 as a powerful mitophagy regulator, through both canonical or noncanonical pathways

    High levels of trim5a are associated with xenophagy in hiv‐1‐infected long‐term nonprogressors

    Get PDF
    Autophagy is a lysosomal‐dependent degradative mechanism essential in maintaining cellular homeostasis, but it is also considered an ancient form of innate eukaryotic fighting against invading microorganisms. Mounting evidence has shown that HIV‐1 is a critical target of autoph-agy that plays a role in HIV‐1 replication and disease progression. In a special subset of HIV‐1‐infected patients that spontaneously and durably maintain extremely low viral replication, namely, long‐term nonprogressors (LTNP), the resistance to HIV‐1‐induced pathogenesis is ac-companied, in vivo, by a significant increase in the autophagic activity in peripheral blood mon-onuclear cells. Recently, a new player in the battle of autophagy against HIV‐1 has been identified, namely, tripartite motif protein 5α (TRIM5α). In vitro data demonstrated that TRIM5α directly recognizes HIV‐1 and targets it for autophagic destruction, thus protecting cells against HIV‐1 in-fection. In this paper, we analyzed the involvement of this factor in the control of HIV‐1 infection through autophagy, in vivo, in LTNP. The results obtained showed significantly higher levels of TRIM5α expression in cells from LTNP with respect to HIV‐1‐infected normal progressor patients. Interestingly, the colocalization of TRIM5α and HIV‐1 proteins in autophagic vacuoles in LTNP cells suggested the participation of TRIM5α in the autophagy containment of HIV‐1 in LTNP. Al-together, our results point to a protective role of TRIM5α in the successful control of the chronic viral infection in HIV‐1‐controllers through the autophagy mechanism. In our opinion, these findings could be relevant in fighting against HIV‐1 disease, because autophagy inducers might be employed in combination with antiretroviral drugs

    On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2

    Get PDF
    The current epidemic of coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for the development of inhibitors of viral replication. Here, we performed a bioinformatic analysis of published and purported SARS-CoV-2 antivirals including imatinib mesylate that we found to suppress SARS-CoV-2 replication on Vero E6 cells and that, according to the published literature on other coronaviruses is likely to act on-target, as a tyrosine kinase inhibitor. We identified a cluster of SARS-CoV-2 antivirals with characteristics of lysosomotropic agents, meaning that they are lipophilic weak bases capable of penetrating into cells. These agents include cepharentine, chloroquine, chlorpromazine, clemastine, cloperastine, emetine, hydroxychloroquine, haloperidol, ML240, PB28, ponatinib, siramesine, and zotatifin (eFT226) all of which are likely to inhibit SARS-CoV-2 replication by non-specific (off-target) effects, meaning that they probably do not act on their ‘official’ pharmacological targets, but rather interfere with viral replication through non-specific effects on acidophilic organelles including autophagosomes, endosomes, and lysosomes. Imatinib mesylate did not fall into this cluster. In conclusion, we propose a tentative classification of SARS-CoV-2 antivirals into specific (on-target) versus non-specific (off-target) agents based on their physicochemical characteristics

    The unbalanced p53/SIRT1 axis may impact lymphocyte homeostasis in COVID-19 patients

    Get PDF
    BACKGROUND/OBJECTIVES: A dysregulated inflammatory profile plays an important role in coronavirus disease-2019 (COVID-19) pathogenesis. Moreover, the depletion of lymphocytes is typically associated with an unfavourable disease course. We studied the role and impact of p53 and deacetylase Sirtuin 1 (SIRT1) on lymph-monocyte homeostasis and their possible effect on T and B cell signalling. METHODS: Gene expression analysis and flow cytometry were performed on peripheral blood mononuclear cells (PBMC) of 35 COVID-19 patients and 10 healthy donors (HD). Inflammatory cytokines, the frequency of Annexin+ cells among CD3+ T cells and CD19+ B cell subsets were quantified. RESULTS: PBMC from COVID-19 patients had a higher p53 expression, and higher concentrations of plasma proinflammatory cytokines (IL1ÎČ, TNF-α, IL8, and IL6) than HD. Deacetylase Sirtuin 1 (SIRT1) expression was significantly decreased in COVID-19 patients and was negatively correlated with p53 (p = 0.003 and r = -0.48). A lower expression of IL-7R and B Cell linker (BLNK), key genes for lymphocyte homeostasis and function, was observed in COVID-19 than in HD. The reduction of IgK and IgL chains was seen in lymphopenic COVID-19 patients. A significant increase in both apoptotic B and T cells were observed. Inflammatory cytokines correlated positively with p53 (IL-1ÎČ: r = 0.5 and p = 0.05; IL-8: r = 0.5 and p = 0.05) and negatively with SIRT1 (IL1-ÎČ: r = -0.5 and p = 0.04; TNF-α: r = -0.4 and p = 0.04). CONCLUSIONS: Collectively, our data indicate that the inflammatory environment, the dysregulated p53/SIRT1 axis and low expression of IL7R and BLNK may impact cell survival, B cell signalling and antibody production in COVID-19 patients. Further studies are required to define the functional impact of low BLNK/IL7R expression during severe acute respiratory syndrome coronavirus-2 infection

    Raft-like lipid microdomains drive autophagy initiation via AMBRA1-ERLIN1 molecular association within MAMs

    Get PDF
    Mitochondria-associated membranes (MAMs) are essential communication subdomains of the endoplasmic reticulum (ER) that interact with mitochondria. We previously demonstrated that, upon macroautophagy/autophagy induction, AMBRA1 is recruited to the BECN1 complex and relocalizes to MAMs, where it regulates autophagy by interacting with raft-like components. ERLIN1 is an endoplasmic reticulum lipid raft protein of the prohibitin family. However, little is known about its association with the MAM interface and its involvement in autophagic initiation. In this study, we investigated ERLIN1 association with MAM raft-like microdomains and its interaction with AMBRA1 in the regulation of the autophagic process. We show that ERLIN1 interacts with AMBRA1 at MAM raft-like microdomains, which represents an essential condition for autophagosome formation upon nutrient starvation, as demonstrated by knocking down ERLIN1 gene expression. Moreover, this interaction depends on the “integrity” of key molecules, such as ganglioside GD3 and MFN2. Indeed, knocking down ST8SIA1/GD3-synthase or MFN2 expression impairs AMBRA1-ERLIN1 interaction at the MAM level and hinders autophagy. In conclusion, AMBRA1-ERLIN1 interaction within MAM raft-like microdomains appears to be pivotal in promoting the formation of autophagosomes. Abbreviations: ACSL4/ACS4: acyl-CoA synthetase long chain family member 4; ACTB/ÎČ-actin: actin beta; AMBRA1: autophagy and beclin 1 regulator 1; ATG14: autophagy related 14; BECN1: beclin 1; CANX: calnexin; Cy5: cyanine 5; ECL: enhanced chemiluminescence; ER: endoplasmic reticulum; ERLIN1/KE04: ER lipid raft associated 1; FB1: fumonisin B1; FE: FRET efficiency; FRET: Förster/fluorescence resonance energy transfer; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GD3: aNeu5Ac(2-8)aNeu5Ac(2-3)bDGalp(1-4)bDGlcp(1-1)ceramide; HBSS: Hanks’ balanced salt solution; HRP: horseradish peroxidase; LMNB1: lamin B1; mAb: monoclonal antibody; MAMs: mitochondria-associated membranes; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MYC/cMyc: proto-oncogene, bHLH transcription factor; P4HB: prolyl 4-hydroxylase subunit beta; pAb: polyclonal antibody; PE: phycoerythrin; SCAP/SREBP: SREBF chaperone; SD: standard deviation; ST8SIA1: ST8 alpha-N-acetyl-neuraminide alpha-2,8 sialyltransferase 1; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBB/beta-tubulin: tubulin beta class I; ULK1: unc-51 like autophagy activating kinase 1; VDAC1/porin: voltage dependent anion channel 1

    Efecto molusquicida del fruto de Sapindus saponaria sobre Galba cubensis, hospedero intermediario de fasciolosis en Cuba

    Get PDF
    Aim: In Cuba, Galba cubensis is the main intermediate hosts of Fasciola hepatica. The objective of this research is to determine at the laboratory level the molluscicidal activity of S. saponaria on G. cubensis to propose this plant as another candidate for ecological control of this snail. Methods Different hidroalcoholic extract concentrations from S. saponaria pericarp after six months collected were assessed according to the WHO methodology. With a concentrations gradient, CL50 y CL90 were determined, at these concentrations influence on hearth rate of the mollusks were evaluated. Results:  It was verified a considerable molluscicidal effect of extracts respect to the lethality (R2 = 60.6; P â‰€ 0.01) in a concentration dependent manner, as well as in the decrease of the heart rate frequency at CL50 y CL90. Differences between LC50 = 39.8 mg/l and LC90 = 67.9 mg/l were significant (P â‰€ 0.01), and also between the control group and LC90 (P â‰€ 0.01); but not between control group and LC50 (P = 0.24). Conclusion: The fact that plant material after six months collected has molluscicidal activity is very important in order to propose this plant as a Fasciolosis intermediate host control candidate in our area.Antecedentes y objetivo: Galba cubensis es el hospedero intermediario principal de Fasciola hepatica en Cuba. El objetivo de este trabajo fue demostrar el efecto molusquicida de Sapindus saponaria L. sobre Galba cubensis a nivel de laboratorio para proponer esta planta como un candidato para el control ecolĂłgico de este caracol. MĂ©todos: Diferentes concentraciones del extracto hidroalcohĂłlico del pericarpio de S. saponaria de seis meses de colectado fueron testadas sobre individuos de G. cubensis segĂșn la metodologĂ­a de la OrganizaciĂłn Mundial de la Salud. Con el gradiente de las concentraciones obtenidas se determinĂł la CL50 y CL90, a las que fue determinada la influencia sobre la frecuencia cardĂ­aca de los moluscos. Resultados Se constatĂł que el efecto molusquicida del extracto vegetal fue considerable (P â‰€ 0,01; R2 = 60,6), con un comportamiento de mortalidad, asĂ­ como de la disminuciĂłn de la frecuencia cardiaca dependiente de la concentraciĂłn. Entre las CL50 = 39,8 mg/L y CL90 = 67,9 mg/L obtenidas se observaron diferencias significativas en la prueba de disminuciĂłn de las frecuencias cardiacas (P â‰€ 0,01), y entre la CL90 y el grupo control (P â‰€ 0,01); no asĂ­ entre el grupo control y la CL50 (P = 0,24). Conclusiones.El hecho de que el material vegetal luego de seis meses de colectado tuviera actividad molusquicida es muy importante para proponer esta planta como candidato para el control de los hospederos intermediarios de Fasciolosis en nuestra regiĂłn

    TRIM50 regulates Beclin 1 proautophagic activity

    Get PDF
    Autophagy is a catabolic process needed for maintaining cell viability and homeostasis in response to numerous stress conditions. Emerging evidence indicates that the ubiquitin system has a major role in this process. TRIMs, an E3 ligase protein family, contribute to selective autophagy acting as receptors and regulators of the autophagy proteins recognizing endogenous or exogenous targets through intermediary autophagic tags, such as ubiquitin. Here we report that TRIM50 fosters the initiation phase of starvation-induced autophagy and associates with Beclin1, a central component of autophagy initiation complex. We show that TRIM50, via the RING domain, ubiquitinates Beclin 1 in a K63-dependent manner enhancing its binding with ULK1 and autophagy activity. Finally, we found that the Lys-372 residue of TRIM50, critical for its own acetylation, is necessary for its E3 ligase activity that governs Beclin1 ubiquitination. Our study expands the roles of TRIMs in regulating selective autophagy, revealing an acetylation-ubiquitination dependent control for autophagy modulation. © 2018 Elsevier B.V

    Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercialNoDerivs 3.0 Unported License.-- et al.The pathogenic mechanisms underlying the progression of non-alcoholic fatty liver disease (NAFLD) are not fully understood. In this study, we aimed to assess the relationship between endoplasmic reticulum (ER) stress and autophagy in human and mouse hepatocytes during NAFLD. ER stress and autophagy markers were analyzed in livers from patients with biopsy-proven non-alcoholic steatosis (NAS) or non-alcoholic steatohepatitis (NASH) compared with livers from subjects with histologically normal liver, in livers from mice fed with chow diet (CHD) compared with mice fed with high fat diet (HFD) or methionine-choline-deficient (MCD) diet and in primary and Huh7 human hepatocytes loaded with palmitic acid (PA). In NASH patients, significant increases in hepatic messenger RNA levels of markers of ER stress (activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP)) and autophagy (BCN1) were found compared with NAS patients. Likewise, protein levels of GRP78, CHOP and p62/SQSTM1 (p62) autophagic substrate were significantly elevated in NASH compared with NAS patients. In livers from mice fed with HFD or MCD, ER stress-mediated signaling was parallel to the blockade of the autophagic flux assessed by increases in p62, microtubule-associated protein 2 light chain 3 (LC3-II)/LC3-I ratio and accumulation of autophagosomes compared with CHD fed mice. In Huh7 hepatic cells, treatment with PA for 8 h triggered activation of both unfolding protein response and the autophagic flux. Conversely, prolonged treatment with PA (24 h) induced ER stress and cell death together with a blockade of the autophagic flux. Under these conditions, cotreatment with rapamycin or CHOP silencing ameliorated these effects and decreased apoptosis. Our results demonstrated that the autophagic flux is impaired in the liver from both NAFLD patients and murine models of NAFLD, as well as in lipid-overloaded human hepatocytes, and it could be due to elevated ER stress leading to apoptosis. Consequently, therapies aimed to restore the autophagic flux might attenuate or prevent the progression of NAFLD.We acknowledge the following grant support: SAF2012-33283 (MINECO, Spain), Comunidad de Madrid S2010/BMD-2423, EFSD and Amylin Paul Langerhans Grant and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM, ISCIII, Barcelona, Spain) to AMV.; SAF2010-16037, SAF2013-43713-R (MINECO) and Centro de Investigación Biomédica en Red de Enfermedades Hepåticas y Digestivas (CIBEREHD, ISCIII) to PMS. RD12/0042/0019 (ISCIII) and S2010/BMD-2478 (Comunidad de Madrid) to LB, PI 13/01299 and Fundación Mutua Madrileña 2012 to C G-M and AIRC IG-2012 to GMF.Peer Reviewe
    • 

    corecore