393 research outputs found
Resampling technique applied to statistics of microsegregation characterization
Characterization of chemical heterogeneities at the dendrite scale is of practical importance for understanding phase transformation either during solidification or during subsequent solid-state treatment. Spot analysis with electron probe is definitely well-suited to investigate such heterogeneities at the micron scale that is relevant for most solidified products. However, very few has been done about the statistics of experimental solute distributions gained from such analyses when they are now more and more used for validating simulation data. There are two main sources generating discrepancies between estimated and actual solute distributions in an alloy: i) data sampling with a limited number of measurements to keep analysis within a reasonable time length; and ii) uncertainty linked to the measurement process, namely the physical noise that accompanies X-ray emission. Focusing on the first of these sources, a few 2-D composition images have been generated by phase field modelling of a Mg-Al alloy. These images were then used to obtain "true" solute distributions to which to compare coarse grid analyses as generally performed with a microanalyser. Resampling, i.e. generating several distributions by grid analyses with limited number of picked-up values, was then used to get statistics of estimates of solute distribution. The discussion of the present results deals first with estimating the average solute content and then focuses on the distribution in the primary phase
Long-Term Potentiation: One Kind or Many?
Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds
Dutch and German 3-year-olds’ representations of voicing alternations
The voicing contrast is neutralised syllable and word finally in Dutch and German, leading to alternations within the morphological paradigm (e.g. Dutch ‘bed(s)’, be[t] be[d]en, German ‘dog(s)’, Hun[t]-Hun[d]e). Despite structural similarity, language-specific morphological, phonological and lexical properties impact on the distribution of this alternation in the two languages. Previous acquisition research has focused on one language only, predominantly focusing on children’s production accuracy, concluding that alternations are not acquired until late in the acquisition process in either language. This paper adapts a perceptual method to investigate how voicing alternations are represented in the mental lexicon of Dutch and German 3-year-olds. Sensitivity to mispronunciations of voicing word-medially in plural forms was measured using a visual fixation procedure. Dutch children exhibited evidence of overgeneralising the voicing alternation, whereas German children consistently preferred the correct pronunciation to mispronunciations. Results indicate that the acquisition of voicing alternations is influenced by language-specific factors beyond the alternation itself
An approach to measuring biodiversity and its use in analysing the effect of nitrogen deposition on woodland butterfly populations in the Netherlands
Exploring modularity in biological networks
Network theoretical approaches have shaped our understanding of many different kinds of biological modularity. This essay makes the case that to capture these contributions, it is useful to think about the role of network models in exploratory research. The overall point is that it is possible to provide a systematic analysis of the exploratory functions of network models in bioscientific research. Using two examples from molecular and developmental biology, I argue that often the same modelling approach can perform one or more exploratory functions, such as introducing new directions of research, offering a complementary set of concepts, methods and algorithms for individuating important features of natural phenomena, generating proofs of principle demonstrations and potential explanations for phenomena of interest and enlarging the scope of certain research agendas. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'
Changes in soluble carbohydrates in polar Caryophyllaceae and Poaceae plants in response to chilling
Contrasting responses of cluster roots formation induced by phosphorus and nitrogen supply in Embothrium coccineum populations from different geographical origin
Indexación: Scopus.Aims: Embothrium coccineum is a pioneer tree that produces cluster roots (CR) induced by phosphorus (P) or nitrogen (N) deficiency, but the role which both N and P play in CR formation for different E. coccineum populations is still unknown. We hypothesized that in E. coccineum, N influences the CR formation response, primarily induced by P limitation. However, this response depends on local adaptations to their specific conditions of geographic origin. Methods: Seedlings from three contrasting edaphoclimatic conditions (Northern, Central and Southern populations) were grown in hydroponic culture under high and low N supply and at five different P supply. Morphophysiological responses, including CR number, growth, biomass, P and N plant concentration, were studied. Results: Our results showed that at high N supply, CR formation was stimulated with increased P supply, but just until it reaches a maximum of 5 μM, above this concentration CR formation decreases. However, at low N supply, a constitutive response was observed regardless of P supply. Moreover, each of these responses depends on the populations. Conclusions: Our study suggests that N drives CR formation induced by P supply and that a differential response exists among E. coccineum populations, that could be related to their origin edaphoclimatic conditions. © 2020, Springer Nature Switzerland AG.https://link-springer-com.recursosbiblioteca.unab.cl/article/10.1007%2Fs11104-020-04622-
Recommended from our members
A decadal view of biodiversity informatics: challenges and priorities
Biodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised. To address the urgent questions around conservation, land-use, environmental change, sustainability, food security and ecosystem services that are facing Governments worldwide, we need to understand how the ecosystem works. So, we need a systems approach to understanding biodiversity that moves significantly beyond taxonomy and species observations. Such an approach needs to look at the whole system to address species interactions, both with their environment and with other species.
It is clear that some barriers to progress are sociological, basically persuading people to use the technological solutions that are already available. This is best addressed by developing more effective systems that deliver immediate benefit to the user, hiding the majority of the technology behind simple user interfaces. An infrastructure should be a space in which activities take place and, as such, should be effectively invisible.
This community consultation paper positions the role of biodiversity informatics, for the next decade, presenting the actions needed to link the various biodiversity infrastructures invisibly and to facilitate understanding that can support both business and policy-makers. The community considers the goal in biodiversity informatics to be full integration of the biodiversity research community, including citizens’ science, through a commonly-shared, sustainable e-infrastructure across all sub-disciplines that reliably serves science and society alike
- …
