610 research outputs found

    Universal Indexes for Highly Repetitive Document Collections

    Get PDF
    Indexing highly repetitive collections has become a relevant problem with the emergence of large repositories of versioned documents, among other applications. These collections may reach huge sizes, but are formed mostly of documents that are near-copies of others. Traditional techniques for indexing these collections fail to properly exploit their regularities in order to reduce space. We introduce new techniques for compressing inverted indexes that exploit this near-copy regularity. They are based on run-length, Lempel-Ziv, or grammar compression of the differential inverted lists, instead of the usual practice of gap-encoding them. We show that, in this highly repetitive setting, our compression methods significantly reduce the space obtained with classical techniques, at the price of moderate slowdowns. Moreover, our best methods are universal, that is, they do not need to know the versioning structure of the collection, nor that a clear versioning structure even exists. We also introduce compressed self-indexes in the comparison. These are designed for general strings (not only natural language texts) and represent the text collection plus the index structure (not an inverted index) in integrated form. We show that these techniques can compress much further, using a small fraction of the space required by our new inverted indexes. Yet, they are orders of magnitude slower.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094

    Studying the Molecular Ambient towards the Young Stellar Object EGO G35.04-0.47

    Get PDF
    We are performing a systematic study of the interstellar medium around extended green objects (EGOs), likely massive young stellar objects driving outflows. EGO G35.04-0.47 is located towards a dark cloud at the northern-west edge of an HII region. Recently, H2 jets were discovered towards this source, mainly towards its southwest, where the H2 1-0 S(1) emission peaks. Therefore, the source was catalogued as the Molecular Hydrogen emission-line object MHO 2429. In order to study the molecular ambient towards this star-forming site, we observed a region around the aforementioned EGO using the Atacama Submillimeter Telescope Experiment in the 12CO J=3--2, 13CO J=3--2, HCO+ J=4--3, and CS J=7--6 lines with an angular and spectral resolution of 22" and 0.11 km s-1, respectively. The observations revealed a molecular clump where the EGO is embedded at v_LSR ~ 51 km s-1, in coincidence with the velocity of a Class I 95 GHz methanol maser previously detected. Analyzing the 12CO line we discovered high velocity molecular gas in the range from 34 to 47 km s-1, most likely a blueshifted outflow driven by the EGO. The alignment and shape of this molecular structure coincide with those of the southwest lobe of MHO 2429 mainly between 46 and 47 km s-1, confirming that we are mapping its CO counterpart. Performing a SED analysis of EGO G35.04-0.47 we found that its central object should be an intermediate-mass young stellar object accreting mass at a rate similar to those found in some massive YSOs. We suggest that this source can become a massive YSO.Comment: accepted to be published in PASJ - 24 September 201

    UMD Banach spaces and square functions associated with heat semigroups for Schr\"odinger and Laguerre operators

    Full text link
    In this paper we define square functions (also called Littlewood-Paley-Stein functions) associated with heat semigroups for Schr\"odinger and Laguerre operators acting on functions which take values in UMD Banach spaces. We extend classical (scalar) L^p-boundedness properties for the square functions to our Banach valued setting by using \gamma-radonifying operators. We also prove that these L^p-boundedness properties of the square functions actually characterize the Banach spaces having the UMD property

    A view of Large Magellanic Cloud HII regions N159, N132, and N166 through the 345 GHz window

    Get PDF
    We present results obtained towards the HII regions N159, N166, and N132 from the emission of several molecular lines in the 345 GHz window. Using ASTE we mapped a 2.4' ×\times 2.4' region towards the molecular cloud N159-W in the 13^{13}CO J=3-2 line and observed several molecular lines at an IR peak very close to a massive young stellar object. 12^{12}CO and 13^{13}CO J=3-2 were observed towards two positions in N166 and one position in N132. The 13^{13}CO J=3-2 map of the N159-W cloud shows that the molecular peak is shifted southwest compared to the peak of the IR emission. Towards the IR peak we detected emission from HCN, HNC, HCO+^{+}, C2_{2}H J=4-3, CS J=7-6, and tentatively C18^{18}O J=3-2. This is the first reported detection of these molecular lines in N159-W. The analysis of the C2_{2}H line yields more evidence supporting that the chemistry involving this molecular species in compact and/or UCHII regions in the LMC should be similar to that in Galactic ones. A non-LTE study of the CO emission suggests the presence of both cool and warm gas in the analysed region. The same analysis for the CS, HCO+^{+}, HCN, and HNC shows that it is very likely that their emissions arise mainly from warm gas with a density between 5×1055 \times 10^5 to some 10610^6 cm−3^{-3}. The obtained HCN/HNC abundance ratio greater than 1 is compatible with warm gas and with an star-forming scenario. From the analysis of the molecular lines observed towards N132 and N166 we propose that both regions should have similar physical conditions, with densities of about 103^3 cm−3^{-3}.Comment: accepted in MNRAS (October 5, 2015

    ASTE observations in the 345 GHz window towards the HII region N113 of the Large Magellanic Cloud

    Get PDF
    N113 is an HII region located in the central part of the Large Magellanic Cloud (LMC) with an associated molecular cloud very rich in molecular species. Most of the previously observed molecular lines cover the frequency range 85-270 GHz. Thus, a survey and study of lines at the 345 GHz window is required in order to have a more complete understanding of the chemistry and excitation conditions of the region. We mapped a region of 2.5' x 2.5' centered at N113 using the Atacama Submillimeter Telescope Experiment in the 13CO J=3-2 line with an angular and spectral resolution of 22" and 0.11 km/s, respectively. In addition, we observed 16 molecular lines as single pointings towards its center. For the molecular cloud associated with N113, from the 13CO J=3-2 map we estimate LTE and virial masses of about 1x10^4 and 4.5x10^4 M_sun, respectively. Additionally, from the dust continuum emission at 500 micron we obtain a mass of gas of 7x10^3 M_sun. Towards the cloud center we detected emission from: 12CO, 13CO, C18O (3-2), HCN, HNC, HCO+, C2H (4-3), and CS (7-6); being the first reported detection of HCN, HNC, and C2H (4-3) lines from this region. The CS (7-6) which was previously tentatively detected is confirmed in this study. By analyzing the HCN, HNC, and C2H, we suggest that their emission may arise from a photodissociation region (PDR). Moreover, we suggest that the chemistry involving the C2H in N113 can be similar to that in Galactic PDRs. Using the HCN J=4-3, J=3-2, and J=1-0 lines in a RADEX analysis we conclude that we are observing very high density gas, between some 10^5 and 10^7 cm-3.Comment: accepted for publication in A&A, September 9, 201

    The molecular environment of the pillar-like features in the HII region G46.5-0.2

    Full text link
    At the interface of HII regions and molecular gas peculiar structures appear, some of them with pillar-like shapes. Understanding their origin is important for characterizing triggered star formation and the impact of massive stars on the interstellar medium. In order to study the molecular environment and the influence of the radiation on two pillar-like features related to the HII region G46.5-0.2, we performed molecular line observations with the Atacama Submillimeter Telescope Experiment, and spectroscopic optical observations with the Isaac Newton Telescope. From the optical observations we identified the star that is exciting the HII region as a spectral type O4-6. The molecular data allowed us to study the structure of the pillars and a HCO+ cloud lying between them. In this HCO+ cloud, which have not any well defined 12CO counterpart, we found direct evidence of star formation: two molecular outflows and two associated near-IR nebulosities. The outflows axis orientation is perpendicular to the direction of the radiation flow from the HII region. Several Class I sources are also embedded in this HCO+ cloud, showing that it is usual that the YSOs form large associations occupying a cavity bounded by pillars. On the other hand, it was confirmed that the RDI process is not occurring in one of the pillar tips.Comment: Accepted in MNRAS (2017 June 13
    • …
    corecore