5,016 research outputs found

    Enhancing AIS to Improve Whale-Ship Collision Avoidance and Maritime Security

    Get PDF
    Whale-ship strikes are of growing worldwide concern due to the steady growth of commercial shipping. Improving the current situation involves the creation of a communication capability allowing whale position information to be estimated and exchanged among vessels and other observation assets. An early example of such a system has been implemented for the shipping lane approaches to the harbor of Boston, Massachusetts where ship traffic transits areas of the Stellwagen Bank National Marine Sanctuary frequently used by whales. It uses the Automated Identification Systems (AIS) technology, currently required for larger vessels but becoming more common in all classes of vessels. However, we believe the default mode of AIS operation will be inadequate to meet the long-term needs of whale-ship collision avoidance, and will likewise fall short of meeting other current and future marine safety and security communication needs. This paper explores the emerging safety and security needs for vessel communications, and considers the consequences of a communication framework supporting asynchronous messaging that can be used to enhance the basic AIS capability. The options we analyze can be pursued within the AIS standardization process, or independently developed with attention to compatibility with existing AIS systems. Examples are discussed for minimizing ship interactions with Humpback Whales and endangered North Atlantic Right Whales on the east coast, and North Pacific Right Whales, Bowhead Whales, Humpback Whales, Blue Whales and Beluga Whales in west coast, Alaskan and Hawaiian waters

    The Luminosity, Mass, and Age Distributions of Compact Star Clusters in M83 Based on HST/WFC3 Observations

    Full text link
    The newly installed Wide Field Camera 3 (WFC3) on the Hubble Space Telescope has been used to obtain multi-band images of the nearby spiral galaxy M83. These new observations are the deepest and highest resolution images ever taken of a grand-design spiral, particularly in the near ultraviolet, and allow us to better differentiate compact star clusters from individual stars and to measure the luminosities of even faint clusters in the U band. We find that the luminosity function for clusters outside of the very crowded starburst nucleus can be approximated by a power law, dN/dL \propto L^{alpha}, with alpha = -2.04 +/- 0.08, down to M_V ~ -5.5. We test the sensitivity of the luminosity function to different selection techniques, filters, binning, and aperture correction determinations, and find that none of these contribute significantly to uncertainties in alpha. We estimate ages and masses for the clusters by comparing their measured UBVI,Halpha colors with predictions from single stellar population models. The age distribution of the clusters can be approximated by a power-law, dN/dt propto t^{gamma}, with gamma=-0.9 +/- 0.2, for M > few x 10^3 Msun and t < 4x10^8 yr. This indicates that clusters are disrupted quickly, with ~80-90% disrupted each decade in age over this time. The mass function of clusters over the same M-t range is a power law, dN/dM propto M^{beta}, with beta=-1.94 +/- 0.16, and does not have bends or show curvature at either high or low masses. Therefore, we do not find evidence for a physical upper mass limit, M_C, or for the earlier disruption of lower mass clusters when compared with higher mass clusters, i.e. mass-dependent disruption. We briefly discuss these implications for the formation and disruption of the clusters.Comment: 36 pages, 13 figures, 1 table; accepted for publication in the Astrophysical Journa

    Self-Positioning Smart Buoys, The \u27Un-Buoy\u27 Solution: Logistic Considerations Using Autonomous Surface Craft Technology and Improved Communications Infrastructure

    Get PDF
    Moored buoys have long served national interests, but incur high development, construction, installation, and maintenance costs. Buoys which drift off-location can pose hazards to mariners, and in coastal waters may cause environmental damage. Moreover, retrieval, repair and replacement of drifting buoys may be delayed when data would be most useful. Such gaps in coastal buoy data can pose a threat to national security by reducing maritime domain awareness. The concept of self-positioning buoys has been advanced to reduce installation cost by eliminating mooring hardware. We here describe technology for operation of reduced cost self-positioning buoys which can be used in coastal or oceanic waters. The ASC SCOUT model is based on a self-propelled, GPS-positioned, autonomous surface craft that can be pre-programmed, autonomous, or directed in real time. Each vessel can communicate wirelessly with deployment vessels and other similar buoys directly or via satellite. Engineering options for short or longer term power requirements are considered, in addition to future options for improved energy delivery systems. Methods of reducing buoy drift and position-maintaining energy requirements for self-locating buoys are also discussed, based on the potential of incorporating traditional maritime solutions to these problems. We here include discussion of the advanced Delay Tolerant Networking (DTN) communications draft protocol which offers improved wireless communication capabilities underwater, to adjacent vessels, and to satellites. DTN is particularly adapted for noisy or loss-prone environments, thus it improves reliability. In addition to existing buoy communication via commercial satellites, a growing network of small satellites known as PICOSATs can be readily adapted to provide low-cost communications nodes for buoys. Coordination with planned vessel Automated Identification Systems (AIS) and International Maritime Organization standards for buoy and vessel notificat- - ion systems are reviewed and the legal framework for deployment of autonomous surface vessels is considered

    Rheology of sedimenting particle pastes

    Get PDF
    We study the local and global rheology of non-Brownian suspensions in a solvent that is not density-matched, leading to either creaming or sedimentation of the particles. Both local and global measurements show that the incomplete density matching leads to the appearance of a critical shear rate above which the suspension is homogenized by the flow, and below which sedimentation or creaming happens. We show that the value of the critical shear rate and its dependence on the experimental parameters are governed by a simple competition between the viscous and gravitational forces, and present a simple scaling model that agrees with the experimental results from different types of experiments (local and global) in different setups and systems

    Structure Formation Inside Triaxial Dark Matter Halos: Galactic Disks, Bulges and Bars

    Get PDF
    We investigate the formation and evolution of galactic disks immersed in assembling live DM halos. Disk/halo components have been evolved from the cosmological initial conditions and represent the collapse of an isolated density perturbation. The baryons include gas (which participates in star formation [SF]) and stars. The feedback from the stellar energy release onto the ISM has been implemented. We find that (1) The growing triaxial halo figure tumbling is insignificant and the angular momentum (J) is channeled into the internal circulation; (2) Density response of the disk is out of phase with the DM, thus diluting the inner halo flatness and washing out its prolateness; (3) The total J is neathly conserved, even in models accounting for feedback; (4) The specific J for the DM is nearly constant, while that for baryons is decreasing; (5) Early stage of disk formation resembles the cat's cradle -- a small amorphous disk fueled via radial string patterns; (6) The initially puffed up gas component in the disk thins when the SF rate drops below ~5 Mo/yr; (7) About 40%-60% of the baryons remain outside the SF region; (8) Rotation curves appear to be flat and account for the observed disk/halo contributions; (9) A range of bulge-dominated to bulgeless disks was obtained; Lower density threshold for SF leads to a smaller, thicker disk; Gravitational softening in the gas has a substantial effect on various aspects of galaxy evolution and mimics a number of intrinsic processes within the ISM; (10) The models are characterized by an extensive bar-forming activity; (11) Nuclear bars, dynamically coupled and decoupled form in response to the gas inflow along the primary bars.Comment: 18 pages, 16 figures, accepted by the Astrophysical Journal. Minor revisions. The high-resolution figures can be found at http://www.pa.uky.edu/~shlosman/research/galdyn/figs07a

    Macroscopic Discontinuous Shear Thickening vs Local Shear Jamming in Cornstarch

    Full text link
    We study the emergence of discontinuous shear-thickening (DST) in cornstarch, by combining macroscopic rheometry with local Magnetic Resonance Imaging (MRI) measurements. We bring evidence that macroscopic DST is observed only when the flow separates into a low-density flowing and a high-density jammed region. In the shear-thickened steady state, the local rheology in the flowing region, is not DST but, strikingly, is often shear-thinning. Our data thus show that the stress jump measured during DST, in cornstach, does not capture a secondary, high-viscosity branch of the local steady rheology, but results from the existence of a shear jamming limit at volume fractions quite significantly below random close packing.Comment: To be published in PR

    Angular Momentum Profiles of Warm Dark Matter Halos

    Get PDF
    We compare the specific angular momentum profiles of virialized dark halos in cold dark matter (CDM) and warm dark matter (WDM) models using high-resolution dissipationless simulations. The simulations were initialized using the same set of modes, except on small scales, where the power was suppressed in WDM below the filtering length. Remarkably, WDM as well as CDM halos are well-described by the two-parameter angular momentum profile of Bullock et al. (2001), even though the halo masses are below the filtering scale of the WDM. Although the best-fit shape parameters change quantitatively for individual halos in the two simulations, we find no systematic variation in profile shapes as a function of the dark matter type. The scatter in shape parameters is significantly smaller for the WDM halos, suggesting that substructure and/or merging history plays a role producing scatter about the mean angular momentum distribution, but that the average angular momentum profiles of halos originate from larger-scale phenomena or a mechanism associated with the virialization process. The known mismatch between the angular momentum distributions of dark halos and disk galaxies is therefore present in WDM as well as CDM models. Our WDM halos tend to have a less coherent (more misaligned) angular momentum structure and smaller spin parameters than do their CDM counterparts, although we caution that this result is based on a small number of halos.Comment: 5 pages, 1 figure, Submitted to ApJ

    Accounting for Stochastic Fluctuations when Analysing Integrated Light of Star Clusters. I: First Systematics

    Full text link
    Star clusters are studied widely both as benchmarks for stellar evolution models and in their own right. Cluster age and mass distributions within galaxies are probes of star formation histories, and of cluster formation and disruption processes. The vast majority of clusters in the Universe is small, and it is well known that the integrated fluxes and colors have broad probability distributions, due to small numbers of bright stars. This paper goes beyond the description of predicted probability distributions, and presents results of the analysis of cluster energy distributions in an explicitly stochastic context. The method developed is Bayesian. It provides posterior probability distributions in the age-mass-extinction space, using multi-wavelength photometric observations and a large collection of Monte-Carlo simulations of clusters of finite stellar masses. Both UBVI and UBVIK datasets are considered, and the study conducted in this paper is restricted to the solar metallicity. We first reassess and explain errors arising from the use of standard analysis methods, which are based on continuous population synthesis models: systematic errors on ages and random errors on masses are large, while systematic errors on masses tend to be smaller. The age-mass distributions obtained after analysis of a synthetic sample are very similar to those found for real galaxies in the literature. The Bayesian approach on the other hand, is very successful in recovering the input ages and masses. Taking stochastic effects into account is important, more important for instance than the choice of adding or removing near-IR data in many cases. We found no immediately obvious reason to reject priors inspired by previous (standard) analyses of cluster populations in galaxies, i.e. cluster distributions that scale with mass as M^-2 and are uniform on a logarithmic age scale.Comment: 17 pages, 13 figures, Accepted for publication in A&A

    Group-cluster merging and the formation of starburst galaxies

    Get PDF
    A significant fraction of clusters of galaxies are observed to have substructure, which implies that merging between clusters and subclusters is a rather common physical process of cluster formation. It still remains unclear how cluster merging affects the evolution of cluster member galaxies. We report the results of numerical simulations, which show the dynamical evolution of a gas-rich late-type spiral in a merger between a small group of galaxies and a cluster. The simulations demonstrate that time-dependent tidal gravitational field of the merging excites non-axisymmetric structure of the galaxy, subsequently drives efficient transfer of gas to the central region, and finally triggers a secondary starburst. This result provides not only a new mechanism of starbursts but also a close physical relationship between the emergence of starburst galaxies and the formation of substructure in clusters. We accordingly interpret post-starburst galaxies located near substructure of the Coma cluster as one observational example indicating the global tidal effects of group-cluster merging. Our numerical results furthermore suggest a causal link between the observed excess of blue galaxies in distant clusters and cluster virialization process through hierarchical merging of subclusters.Comment: 5 pages 3 color figures, ApJL in pres
    corecore