2,077 research outputs found

    Long-range epidemic spreading in a random environment

    Full text link
    Modeling long-range epidemic spreading in a random environment, we consider a quenched disordered, dd-dimensional contact process with infection rates decaying with the distance as 1/rd+σ1/r^{d+\sigma}. We study the dynamical behavior of the model at and below the epidemic threshold by a variant of the strong-disorder renormalization group method and by Monte Carlo simulations in one and two spatial dimensions. Starting from a single infected site, the average survival probability is found to decay as P(t)∌t−d/zP(t) \sim t^{-d/z} up to multiplicative logarithmic corrections. Below the epidemic threshold, a Griffiths phase emerges, where the dynamical exponent zz varies continuously with the control parameter and tends to zc=d+σz_c=d+\sigma as the threshold is approached. At the threshold, the spatial extension of the infected cluster (in surviving trials) is found to grow as R(t)∌t1/zcR(t) \sim t^{1/z_c} with a multiplicative logarithmic correction, and the average number of infected sites in surviving trials is found to increase as Ns(t)∌(ln⁥t)χN_s(t) \sim (\ln t)^{\chi} with χ=2\chi=2 in one dimension.Comment: 12 pages, 6 figure

    Comparing the performance of stellar variability filters for the detection of planetary transits

    Full text link
    We have developed a new method to improve the transit detection of Earth-sized planets in front of solar-like stars by fitting stellar microvariability by means of a spot model. A large Monte Carlo numerical experiment has been designed to test the performance of our approach in comparison with other variability filters and fitting techniques for stars of different magnitudes and planets of different radius and orbital period, as observed by the space missions CoRoT and Kepler. Here we report on the results of this experiment.Comment: 4 pages, 3 postscript figures, Transiting Planets Proceeding IAU Symposium No.253, 200

    Wide-field mid-infrared and millimetre imaging of the high-redshift radio galaxy, 4C41.17

    Get PDF
    We present deep 350- and 1200-micron imaging of the region around 4C41.17 -- one of the most distant (z = 3.792) and luminous known radio galaxies -- obtained with the Submillimeter High Angular Resolution Camera (SHARC-II) and the Max Planck Millimeter Bolometer Array (MAMBO). The radio galaxy is robustly detected at 350- and 1200-micron, as are two nearby 850-micron-selected galaxies; a third 850-micron source is detected at 350-micron and coincides with a ~ 2-sigma feature in the 1200-micron map. Further away from the radio galaxy an additional nine sources are detected at 1200-micron, bringing the total number of detected (sub)millimeter selected galaxies (SMGs) in this field to 14. Using radio images from the Very Large Array (VLA) and Spitzer mid-infrared (mid-IR) data, we find statistically robust radio and/or 24-micron counterparts to eight of the 14 SMGs in the field around 4C41.17. Follow-up spectroscopy with Keck/LRIS has yielded redshifts for three of the eight robustly identified SMGs, placing them in the redshift range 0.5 < z < 2.7, i.e. well below that of 4C41.17. We infer photometric redshifts for a further four sources using their 1.6-micron (rest-frame) stellar feature as probed by the IRAC bands; only one of them is likely to be at the same redshift as 4C41.17. Thus at least four, and as many as seven, of the SMGs within the 4C41.17 field are physically unrelated to the radio galaxy. With the redshift information at hand we are able to constrain the observed over-densities of SMGs within radial bins stretching to R=50 and 100" (~ 0.4 and ~ 0.8Mpc at z ~ 3.8) from the radio galaxy to ~ 5x and ~ 2x that of the field, dropping off to the background value at R=150". [Abridged]Comment: 20 pages, 9 figures, accepted for publication in MNRA

    Splitting Proofs for Interpolation

    Full text link
    We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the com- mon signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refuta- tion into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover VAMPIRE and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.Comment: 26th Conference on Automated Deduction, 201

    Far-Infrared Properties of Spitzer-selected Luminous Starbursts

    Get PDF
    We present SHARC-2 350 micron data on 20 luminous z ~ 2 starbursts with S(1.2mm) > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S(350um) > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass--temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6um--2mm measurements of local starbursts. We find characteristic single-component temperatures T1 ~ 35.5+-2.2 K and integrated infrared (IR) luminosities around 10^(12.9+-0.1) Lsun for the SWIRE-selected sources. Molecular gas masses are estimated at 4 x 10^(10) Msun, assuming kappa(850um)=0.15 m^2/kg and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply >~2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 um flux densities, provides an effective means for the study of SMGs at z ~ 1.5--2.5.Comment: 13 pages, 4 figures, edited to match published version in ApJ 717, 29-39 (2010

    HAT-P-5b: A Jupiter-like hot Jupiter Transiting a Bright Star

    Get PDF
    We report the discovery of a planet transiting a moderately bright (V = 12.00) G star, with an orbital period of 2.788491 +/-0.000025 days. From the transit light curve we determine that the radius of the planet is Rp = 1.257 +/- 0.053 RJup. HAT-P-5b has a mass of Mp = 1.06 +/- 0.11 MJup, similar to the average mass of previously-known transiting exoplanets, and a density of rho = 0.66 +/- 0.11 g cm^-3 . We find that the center of transit is Tc = 2,454,241.77663 +/- 0.00022 (HJD), and the total transit duration is 0.1217 +/- 0.0012 days.Comment: 5 pages, submitted to APJ

    Climate change and changing landscape - a coparativ evaluation on chinese and hungarian sample areas

    Get PDF
    The effects of globalisation are becoming obvious not only in the world economy but in natural processes as well. Increase of deterioration of natural conditions result in more and more decrease of land and water resources. Some experts even suggest that the changing climate of the next several decades can result in the transformation of the natural landscape. Human activities, global and regional changes of climate and land use destroy the ecological environment, which also make the service function of the local ecosystem damaged constantly. We can improve ecological security of an area through regional land use pattern opti-mizing. The physical geographical consequences of aridification might be described through the decrease of ground water level, the change of the biomass quantity and quality. Their spatial and temporal variation may reflect the intensity and strength of degradation. Remote sensing is one of the best tools to follow these processes, applying different databases. Spatial analysis of the gained information may help us to delineate the areas potentially endangered by even a minor climate change
    • 

    corecore