6,044 research outputs found

    Metal-insulator transition in YHx: scaling of the sub-THz conductivity

    Full text link
    The established scaling laws of the conductivity with temperature and doping are strong indications for the quantum nature of the metal-insulator transition in YHx_x. Here we report the first results on the frequency scaling of the conductivity. Samples were brought from the insulating to the metallic phase by carrier doping via illumination. In the metallic phase, the sub-terahertz conductivity coincides with the dc data. These results do not agree with the simplest picture of a quantum-phase transition.Comment: 4 pages, accepted to PR

    Magnetic dipolar ordering and relaxation in the high-spin molecular cluster compound Mn6

    Get PDF
    Few examples of magnetic systems displaying a transition to pure dipolar magnetic order are known to date, and single-molecule magnets can provide an interesting example. The molecular cluster spins and thus their dipolar interaction energy can be quite high, leading to reasonably accessible ordering temperatures, provided the crystal field anisotropy is sufficiently small. This condition can be met for molecular clusters of sufficiently high symmetry, as for the Mn6 compound studied here. Magnetic specific heat and susceptibility experiments show a transition to ferromagnetic dipolar order at T_{c} = 0.16 K. Classical Monte-Carlo calculations indeed predict ferromagnetic ordering and account for the correct value of T_{c}. In high magnetic fields we detected the contribution of the ^{55}Mn nuclei to the specific heat, and the characteristic timescale of nuclear relaxation. This was compared with results obtained directly from pulse-NMR experiments. The data are in good mutual agreement and can be well described by the theory for magnetic relaxation in highly polarized paramagnetic crystals and for dynamic nuclear polarization, which we extensively review. The experiments provide an interesting comparison with the recently investigated nuclear spin dynamics in the anisotropic single molecule magnet Mn12-ac.Comment: 19 pages, 11 eps figures. Contains extensive discussions on dipolar ordering, specific heat and nuclear relaxation in molecular magnet

    Experiences and needs of patients with incurable cancer regarding advance care planning:results from a national cross-sectional survey

    Get PDF
    Introduction: Patients faced with incurable cancer may experience a lack of support from their physician throughout and after treatment. Studies on the needs and experiences of these patients are scarce. In this study, we explored the needs and experiences of patients diagnosed with incurable cancer regarding the conversation, in which they were told that their cancer was incurable, the care received after this conversation, and their preferences regarding end-of-life conversations. Methods: Data were cross-sectionally collected through a national online survey in the Netherlands (September 2018). Descriptive statistics and correlation coefficients were reported and subgroups were compared. Results: Six hundred fifty-four patients (mean age 60 years; 58% women) completed the survey. Patients were primarily diagnosed with breast cancer (22%) or a hematological malignancy (21%). Patients reported a strong need for emotional support during the conversation, in which they were told their cancer was incurable (mean score 8.3; scale 1–10). Their experienced satisfaction with received emotional support was mediocre (mean score 6.4; scale 1–10). Of those patients who felt like they did not receive any additional care (37%) after the diagnosis, the majority expressed a clear need for this kind of care (59%). Mostly, support pertained to psychosocial issues. Regarding conversations about the end of life, most patients (62%) expressed a need to discuss this topic, and preferred their healthcare provider to initiate this conversation. Conclusion: Care for patients with incurable cancer can be further improved by tailoring conversations to specific needs and timely providing appropriate supportive care services

    The metallic state in disordered quasi-one-dimensional conductors

    Get PDF
    The unusual metallic state in conjugated polymers and single-walled carbon nanotubes is studied by dielectric spectroscopy (8--600 GHz). We have found an intriguing correlation between scattering time and plasma frequency. This relation excludes percolation models of the metallic state. Instead, the carrier dynamics can be understood in terms of the low density of delocalized states around the Fermi level, which arises from the competion between disorder-induced localization and interchain-interactions-induced delocalization.Comment: 4 pages including 4 figure

    Mesoscopic phase separation in La2CuO4.02 - a 139La NQR study

    Full text link
    In crystals of La2CuO4.02 oxygen diffusion can be limited to such small length scales, that the resulting phase separation is invisible for neutrons. Decomposition of the 139La NQR spectra shows the existence of three different regions, of which one orders antiferromagnetically below 17K concomitantly with the onset of a weak superconductivity in the crystal. These regions are compared to the macroscopic phases seen previously in the title compound and the cluster-glass and striped phases reported for the underdoped Sr-doped cuprates.Comment: 4 pages, RevTeX, 5 figures, to be published in PR

    Observation of Supershell Structure in Alkali Metal Nanowires

    Get PDF
    Nanowires are formed by indenting and subsequently retracting two pieces of sodium metal. Their cross-section gradually reduces upon retraction and the diameters can be obtained from the conductance. In previous work we have demonstrated that when one constructs a histogram of diameters from large numbers of indentation-retraction cycles, such histograms show a periodic pattern of stable nanowire diameters due to shell structure in the conductance modes. Here, we report the observation of a modulation of this periodic pattern, in agreement with predictions of a supershell structure.Comment: Phys. Rev. Lett., in prin

    Dopant-induced crossover from 1D to 3D charge transport in conjugated polymers

    Get PDF
    The interplay between inter- and intra-chain charge transport in bulk polythiophene in the hopping regime has been clarified by studying the conductivity as a function of frequency (up to 3 THz), temperature and doping level. We present a model which quantitatively explains the observed crossover from quasi-one-dimensional transport to three-dimensional hopping conduction with increasing doping level. At high frequencies the conductivity is dominated by charge transport on one-dimensional conducting chains.Comment: 4 pages, 2 figure

    Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    Full text link
    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.Comment: 14 page

    Shot noise suppression at room temperature in atomic-scale Au junctions

    Full text link
    Shot noise encodes additional information not directly inferable from simple electronic transport measurements. Previous measurements in atomic-scale metal junctions at cryogenic temperatures have shown suppression of the shot noise at particular conductance values. This suppression demonstrates that transport in these structures proceeds via discrete quantum channels. Using a high frequency technique, we simultaneously acquire noise data and conductance histograms in Au junctions at room temperature and ambient conditions. We observe noise suppression at up to three conductance quanta, with possible indications of current-induced local heating and 1/f1/f noise in the contact region at high biases. These measurements demonstrate the quantum character of transport at room temperature at the atomic scale. This technique provides an additional tool for studying dissipation and correlations in nanodevices.Comment: 15 pages, 4 figures + supporting information (6 pages, 6 figures

    Similarity of slow stripe fluctations between Sr-doped cuprates and oxygen-doped nickelates

    Get PDF
    Stripe fluctuations in La2NiO4.17 have been studied by 139La NMR using the field and temperature dependence of the linewidth and relaxation rates. In the formation process of the stripes the NMR line intensity is maximal below 230K, starts to diminish around 140K, disappears around 50K and recovers at 4K. These results are shown to be consistent with, but completely complementary to neutron measurements, and to be generic for oxygen doped nickelates and underdoped cuprates.Comment: 4 pages including 4 figure
    corecore