1,046 research outputs found

    Competition and intraguild predation between the braconid parasitoid Bracon hylobii and the entomopathogenic nematode Heterorhabditis downesi, natural enemies of the large pine weevil, Hylobius abietis

    Get PDF
    In biological control programmes introduced natural enemies compete with indigenous enemies for hosts and may also engage in intraguild predation when two species competing for the same prey attack and consume one another. The large pine weevil, Hylobius abietis L. (Coleoptera: Curculionidae), is an important pest of coniferous reforestation in Europe. Among its natural enemies, the parasitoid Bracon hylobii Ratz. (Hymenoptera: Braconidae) and entomopathogenic nematodes have potential as biological control agents. Both parasitoid and nematodes target the weevil larvae and, hence, there is potential for competition or intraguild predation. In this study, we examine the interaction of B. hylobii with the nematode Heterorhabditis downesi Stock, Griffin and Burnell (Nematode: Heterorhabditidae), testing the susceptibility of larvae, pupae and adults of B. hylobii to H. downesi and whether female parasitoids discriminate between nematode-infected and uninfected weevils for oviposition. In choice tests, when weevils were exposed to nematodes 1–7 days previously, no B. hylobii oviposited on nematode-infected weevil larvae. Up to 24 h, healthy weevils were twice as likely as nematodeinfected ones to be used for oviposition. Bracon hylobii females did not adjust clutch size; nematode-infected hosts were either rejected or the parasitoid laid a full clutch of eggs on them. When nematodes were applied to the parasitoid feeding on weevil larvae, the nematodes parasitized the parasitoid larvae, there was a reduction in cocoon formation and fewer cocoons eclosed. Eclosion rate was not reduced when nematodes were applied to fully formed cocoons, but nearly all of the emerging adults were killed by nematodes

    Functional Analysis of Subunit e of the F\u3csub\u3e1\u3c/sub\u3eF\u3csub\u3eo\u3c/sub\u3e-ATP Synthase of the Yeast \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e: Importance of the N-Terminal Membrane Anchor Region

    Get PDF
    Mitochondrial F1Fo-ATP synthase complexes do not exist as physically independent entities but rather form dimeric and possibly oligomeric complexes in the inner mitochondrial membrane. Stable dimerization of two F1Fo-monomeric complexes involves the physical association of two membrane-embedded Fo-sectors. Previously, formation of the ATP synthase dimeric-oligomeric network was demonstrated to play a critical role in modulating the morphology of the mitochondrial inner membrane. In Saccharomyces cerevisiae, subunit e (Su e) of the Fo-sector plays a central role in supporting ATP synthase dimerization. The Su e protein is anchored to the inner membrane via a hydrophobic region located at its N-terminal end. The hydrophilic C-terminal region of Su e resides in the intermembrane space and contains a conserved coiled-coil motif. In the present study, we focused on characterizing the importance of these regions for the function of Su e. We created a number of C-terminal-truncated derivatives of the Su e protein and expressed them in the Su e null yeast mutant. Mitochondria were isolated from the resulting transformant strains, and a number of functions of Su e were analyzed. Our results indicate that the N-terminal hydrophobic region plays important roles in the Su e-dependent processes of mitochondrial DNA maintenance, modulation of mitochondrial morphology, and stabilization of the dimer-specific Fo subunits, subunits g and k. Furthermore, we show that the C-terminal coiled-coil region of Su e functions to stabilize the dimeric form of detergent-solubilized ATP synthase complexes. Finally, we propose a model to explain how Su e supports the assembly of the ATP synthase dimers-oligomers in the mitochondrial membrane

    Mannitol transport and mannitol dehydrogenase activities are coordinated in olea europaea under salt and osmotic stresses

    Get PDF
    This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Plant and Cell Physiology following peer review. The definitive publisher-authenticated version is available online at http://pcp.oxfordjournals.org/cgi/content/abstract/pcr121? ijkey=6orgUM5fkIjedYn&keytype=refThe intracellular accumulation of organic compatible solutes functioning as osmoprotectants, such as polyols, is an important response mechanism of several plants to drought and salinity. In Olea europaea a mannitol transport system (OeMaT1) was previously characterised as a key player in plant response to salinity. In the present study, heterotrophic sink models, such as olive cell suspensions and fruit tissues, and source leaves were used for analytical, biochemical and molecular studies. The kinetic parameters of mannitol dehydrogenase (MTD) determined in mannitol-growing cells, at 25 °C and pH 9.0, were as follows: Km, 54.5 mM mannitol and Vmax, 0.47 μmol h-1 mg-1 protein. The corresponding cDNA was cloned and named OeMTD1. OeMTD1 expression was correlated with MTD activity, OeMaT1 expression and carrier-mediated mannitol transport, in mannitol- and sucrose-growing cells. Furthermore, sucrosegrowing cells displayed only residual OeMTD activity, even though high levels of OeMTD1 transcription were observed. There is evidence OeMTD is regulated at both transcriptional and post-transcriptional levels. MTD activity and OeMTD1 expression were repressed after Na+, K+ and PEG treatments, both in mannitol- and sucrose-growing cells. In contrast, salt and drought significantly increased mannitol transport activity and OeMaT1 expression. Altogether, these studies support that olive tree copes with salinity and drought by coordinating mannitol transport with intracellular metabolism.This work was supported by the Portuguese Foundation for Science and Technology (FCT) (research project ref. PTDC/AGR-ALI/100636/2008; to A. Conde, grant ref. SFRH/BD/47699/2008; to C. Conde, grant ref. SFRH/BPD/34998/2007; to P. Silvagrant ref. SFRH/BD/13460/2003)

    Assessing livelihood-ecosystem interdependencies and natural resource governance in Indian villages in the Middle Himalayas

    Get PDF
    © 2018, The Author(s). Mountains host high biological and cultural diversity, generating ecosystem services providing benefits over multiple scales but also suffering significant poverty and vulnerabilities. Case studies in two contrasting village communities in the Indian Middle Himalayas explore linkages between people and adjacent forest and river ecosystems. Interviews with local people and direct observations revealed low food availability and decreasing self-sufficiency, under the combined pressures of increasing foraging by wildlife (primarily pigs and monkeys) coupled with seasonal to permanent outmigration by younger men seeking more secure income and alternative livelihoods. Much of the income remitted by migrants to their villages was not retained locally but flowed back out of the Himalayan region through purchases of food produced and marketed in the plains. This threatens the economic viability of villages, also placing asymmetric pressures on resident female, elderly and young people who concentrate labour on local livestock production to the neglect of crop agriculture, further compounding land abandonment and wildlife foraging. Significant traditional knowledge remains, along with utilitarian, cultural and spiritual connections with the landscape. Many beneficiaries of locally produced ecosystem services are remote from village communities (particularly water flows downstream to the plains), but no recompense is paid to stewards of the forested Himalayan landscape. Although local people currently perceive high biodiversity as a constraint to agriculture and other economic activities, the Himalayan landscapes could potentially constitute an asset with appropriate institutional development through promotion of managed bioprospecting, guided ecotourism and payment for ecosystem services (PES) schemes for water supply and under REDD+

    An Ounce of Prevention: How Are We Managing the Early Assessment of Residents\u27 Clinical Skills?: A CERA Study

    Get PDF
    BACKGROUND AND OBJECTIVES: Clinical skills deficits in residents are common but when identified early can result in decreased cost, faculty time, and stress related to remediation. There is currently no accepted best practice for early assessment of incoming residents\u27 clinical skills. This study describes the current state of early PGY-1 clinical skills assessment in US family medicine residencies. METHODS: Eleven questions were embedded in the nationwide CERA survey to US family medicine residency directors regarding the processes, components, and barriers to early PGY-1 assessment. Responses are described, and bivariate analyses of the relationship between assessment variables and percentage of international medical graduates (IMGs), type of program, and barriers to implementation were performed using chi square testing. RESULTS: Almost four of five (78.4%) responding programs conduct formal early assessments to establish baseline clinical skills (89.6%), provide PGY-1 residents with a guide to focus their learning goals (71.6%), and less often, in response to resident performance problems (34.3%). Barriers to implementing PGY-1 early assessment programs include cost of faculty time (56.3%), cost of tools (42.1%), and time for the assessment during the PGY-1 resident\u27s schedule (41.0%). Cost of faculty time and time for assessment from the PGY-1 resident\u27s schedule were statistically significant major/insurmountable barriers for community-based, non-university-affiliated programs. CONCLUSIONS: Early PGY-1 assessments with locally developed tools for direct observation are commonly used in family medicine residency programs. Assessment program development should be targeted toward using existing, validated tools during the PGY-1 resident\u27s patient care schedule

    Why don't they accept Non-Invasive Ventilation? : Insight into the interpersonal perspectives of patients with MND.

    Get PDF
    "Objectives. Although non-invasive ventilation (NIV) can benefit survival and quality of life, it is rejected by a substantial proportion of people with motor neurone disease (MND). The aim of this study was to understand why some MND patients decline or withdraw from NIV. Method. Nine patients withMND(male = 7, mean age = 67 years) participated in this study. These patients, from a cohort of 35 patients who were offered NIV treatment to support respiratory muscle weakness, did not participate in NIV treatment when it was clinically appropriate. Semi-structured interviews and interpretative phenomenological analysis (IPA) were employed to explore these patient’s experience of MND and their thoughts and understanding of NIV treatment. Results. Using IPA, four themes were identified: preservation of the self, negative perceptions of NIV, negative experience with health care services, and not needing NIV. Further analysis identified the fundamental issue to be the maintenance of perceived self, which was interpreted to consist of the sense of autonomy, dignity, and quality of life. Conclusions. The findings indicate psychological reasons for disengagement with NIV. The threat to the self, the sense of loss of control, and negative views of NIV resulting from anxiety were more important to these patients than prolonging life in its current form. These findings suggest the importance of understanding the psychological dimension involved in decision-making regarding uptake of NIV and a need for sensitive holistic evaluation if NIV is declined.

    Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland

    Get PDF
    Agrivoltaics describes concurrent agricultural production of crops and photovoltaic generation of electricity on the same cropland. By using tinted semi-transparent solar panels, this study introduces a novel element to transform the concept of agrivoltaics from just solar-sharing to selective utilisation of different light wavelengths. Agrivoltaic growth of basil and spinach was tested. When compared with classical agriculture, and based on the feed-in-tariff of the experimental location, agrivoltaic co-generation of biomass and electricity is calculated to result in an estimated financial gross gain up to +2.5% for basil and +35% for spinach. Marketable biomass yields did not change significantly for basil, while a statistically significant loss was observed for spinach. This was accompanied by a relative increase in the protein content for both plants grown under agrivoltaic conditions. Agrivoltaics implemented with tinted solar panels improved the biomass production per unit amount of solar radiation up to 68%, with up to 63% increase in the ratio of leaf and stem biomass to root. Agrivoltaics can enrich the portfolio of farmers, mitigate risks associated with climate, and vastly enhance global photovoltaics capacity without compromising agricultural production.Leverhulme Trust RPG-2015-393 Italian Ministry of University and Research (to co-author A Schievano

    Low-loss Materials for high Q-factor Bragg Reflector Resonators

    Full text link
    A Bragg resonator uses dielectric plates within a metallic cavity to confine the energy within a central free space region. The importance of the permittivity is shown with a better Q-factor possible using higher permittivity materials of larger intrinsic dielectric losses. This is because the electric energy in the reflectors decreases proportionally to the square root of permittivity and the coupling to the metallic losses decrease linearly. In a sapphire resonator with a single reflector pair a Q-factor of 2.34x10^5 is obtained, which may be improved on by up to a factor of 2 using higher permittivity materials

    Effect of inhaled corticosteroid particle size on asthma efficacy and safety outcomes: a systematic literature review and meta-analysis

    Get PDF
    BACKGROUND: Inhaled corticosteroids (ICS) are the primary treatment for persistent asthma. Currently available ICS have differing particle size due to both formulation and propellant, and it has been postulated that this may impact patient outcomes. This structured literature review and meta-analysis compared the effect of small and standard particle size ICS on lung function, symptoms, rescue use (when available) and safety in patients with asthma as assessed in head-to-head randomized controlled trials (RCTs). METHODS: A systematic literature search of MEDLINE was performed to identify RCTs (1998-2014) evaluating standard size (fluticasone propionate-containing medications) versus small particle size ICS medication in adults and children with asthma. Efficacy outcomes included forced expiratory volume in 1 s (FEV1), morning peak expiratory flow (PEF), symptom scores, % predicted forced expiratory flow between 25 and 75% of forced vital capacity (FEF25-75%), and rescue medication use. Safety outcomes were also evaluated when available. RESULTS: Twenty-three independent trials that met the eligibility criteria were identified. Benefit-risk plots did not demonstrate any clinically meaningful differences across the five efficacy endpoints considered and no appreciable differences were noted for most safety endpoints. Meta-analysis results, using a random-effects model, demonstrated no significant difference between standard and small size particle ICS medications in terms of effects on mean change from baseline FEV1 (L) (-0.011, 95% confidence interval [CI]: -0.037, 0.014 [N = 3524]), morning PEF (L/min) (medium/low doses: -3.874, 95% CI: -10.915, 3.166 [N = 1911]; high/high-medium doses: 5.551, 95% CI: -1.948, 13.049 [N = 749]) and FEF25-75% predicted (-2.418, 95% CI: -6.400; 1.564 [N = 115]). CONCLUSIONS: Based on the available literature, no clinically significant differences in efficacy or safety were observed comparing small and standard particle size ICS medications for the treatment of asthma. TRIAL REGISTRATION: GSK Clinical Study Register No: 202012

    Macrophages Are Required for Dendritic Cell Uptake of Respiratory Syncytial Virus from an Infected Epithelium

    Get PDF
    We have previously shown that the respiratory syncytial virus [RSV] can productively infect monocyte derived dendritic cells [MoDC] and remain dormant within the same cells for prolonged periods. It is therefore possible that infected dendritic cells act as a reservoir within the airways of individuals between annual epidemics. In the present study we explored the possibility that sub-epithelial DCs can be infected with RSV from differentiated bronchial epithelium and that in turn RSV from DCs can infect the epithelium. A dual co-culture model was established in which a differentiated primary airway epithelium on an Air Liquid Interface (ALI) was cultured on a transwell insert and MoDCs were subsequently added to the basolateral membrane of the insert. Further experiments were undertaken using a triple co-culture model in which in which macrophages were added to the apical surface of the differentiated epithelium. A modified RSV [rr-RSV] expressing a red fluorescent protein marker of replication was used to infect either the MoDCs or the differentiated epithelium and infection of the reciprocal cell type was assessed using confocal microscopy. Our data shows that primary epithelium became infected when rr-RSV infected MoDCs were introduced onto the basal surface of the transwell insert. MoDCs located beneath the epithelium did not become infected with virus from infected epithelial cells in the dual co-culture model. However when macrophages were present on the apical surface of the primary epithelium infection of the basal MoDCs occurred. Our data suggests that RSV infected dendritic cells readily transmit infection to epithelial cells even when they are located beneath the basal layer. However macrophages appear to be necessary for the transmission of infection from epithelial cells to basal dendritic cells
    • …
    corecore