30 research outputs found

    Ss-Sl2, a Novel Cell Wall Protein with PAN Modules, Is Essential for Sclerotial Development and Cellular Integrity of Sclerotinia sclerotiorum

    Get PDF
    The sclerotium is an important dormant body for many plant fungal pathogens. Here, we reported that a protein, named Ss-Sl2, is involved in sclerotial development of Sclerotinia sclerotiorum. Ss-Sl2 does not show significant homology with any protein of known function. Ss-Sl2 contains two putative PAN modules which were found in other proteins with diverse adhesion functions. Ss-Sl2 is a secreted protein, during the initial stage of sclerotial development, copious amounts of Ss-Sl2 are secreted and accumulated on the cell walls. The ability to maintain the cellular integrity of RNAi-mediated Ss-Sl2 silenced strains was reduced, but the hyphal growth and virulence of Ss-Sl2 silenced strains were not significantly different from the wild strain. Ss-Sl2 silenced strains could form interwoven hyphal masses at the initial stage of sclerotial development, but the interwoven hyphae could not consolidate and melanize. Hyphae in these interwoven bodies were thin-walled, and arranged loosely. Co-immunoprecipitation and yeast two-hybrid experiments showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Woronin body major protein (Hex1) and elongation factor 1-alpha interact with Ss-Sl2. GAPDH-knockdown strains showed a similar phenotype in sclerotial development as Ss-Sl2 silenced strains. Hex1-knockdown strains showed similar impairment in maintenance of hyphal integrity as Ss-Sl2 silenced strains. The results suggested that Ss-Sl2 functions in both sclerotial development and cellular integrity of S. sclerotiorum

    Tipping the Balance: Sclerotinia sclerotiorum Secreted Oxalic Acid Suppresses Host Defenses by Manipulating the Host Redox Environment

    Get PDF
    Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success

    Toxin Kid uncouples DNA replication and cell division to enforce retention of plasmid R1 in Escherichia coli cells

    No full text
    Worldwide dissemination of antibiotic resistance in bacteria is facilitated by plasmids that encode postsegregational killing (PSK) systems. These produce a stable toxin (T) and a labile antitoxin (A) conditioning cell survival to plasmid maintenance, because only this ensures neutralization of toxicity. Shortage of antibiotic alternatives and the link of TA pairs to PSK have stimulated the opinion that premature toxin activation could be used to kill these recalcitrant organisms in the clinic. However, validation of TA pairs as therapeutic targets requires unambiguous understanding of their mode of action, consequences for cell viability, and function in plasmids. Conflicting with widespread notions concerning these issues, we had proposed that the TA pair kis-kid (killing suppressor-killing determinant) might function as a plasmid rescue system and not as a PSK system, but this remained to be validated. Here, we aimed to clarify unsettled mechanistic aspects of Kid activation, and of the effects of this for kis-kid–bearing plasmids and their host cells. We confirm that activation of Kid occurs in cells that are about to lose the toxin-encoding plasmid, and we show that this provokes highly selective restriction of protein outputs that inhibits cell division temporarily, avoiding plasmid loss, and stimulates DNA replication, promoting plasmid rescue. Kis and Kid are conserved in plasmids encoding multiple antibiotic resistance genes, including extended spectrum β-lactamases, for which therapeutic options are scarce, and our findings advise against the activation of this TA pair to fight pathogens carrying these extrachromosomal DNAs
    corecore