257 research outputs found

    An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex

    Get PDF
    BACKGROUND: Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level. OBJECTIVE: This study's objective was to delineate new causes of immunoglobulin CSR-Ds and thus gain further insights into the process of immunoglobulin class-switch recombination (CSR). METHODS: Exome sequencing in 2 immunoglobulin CSR-D patients identified variations in the INO80 gene. Functional experiments were performed to assess the function of INO80 on immunoglobulin CSR. RESULTS: We identified recessive, nonsynonymous coding variations in the INO80 gene in 2 patients affected by defective immunoglobulin CSR. Expression of wild-type INO80 in patients' fibroblastic cells corrected their hypersensitivity to high doses of gamma-irradiation. In murine CH12-F3 cells, the INO80 complex accumulates at Salpha and Emu regions of the IgH locus, and downregulation of INO80 as well as its partners Reptin and Pontin impaired CSR. In addition, Reptin and Pontin were shown to interact with activation-induced cytidine deaminase. Finally, an abnormal separation of sister chromatids was observed upon INO80 downregulation in CH12-F3 cells, pinpointing its role in cohesin activity. CONCLUSION: INO80 deficiency appears to be associated with defective immunoglobulin CSR. We propose that the INO80 complex modulates cohesin function that may be required during immunoglobulin switch region synapsis

    The successful introduction of an adapted form of the mini extra corporeal circulation used for cardiac surgery in an obese patient

    Get PDF
    Obese patients undergoing cardiac surgery have been shown to have a high risk of developing postoperative complications, specifically: increased length of hospital stay, readmission to intensive care unit, acute renal failure, deep sternal wound infections and new onset of atrial fibrillation

    Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase δ syndrome 2: A cohort study

    Get PDF
    Background Activated phosphoinositide 3-kinase δ syndrome (APDS) 2 (p110δ-activating mutations causing senescent T cells, lymphadenopathy, and immunodeficiency [PASLI]–R1), a recently described primary immunodeficiency, results from autosomal dominant mutations in PIK3R1, the gene encoding the regulatory subunit (p85α, p55α, and p50α) of class IA phosphoinositide 3-kinases. Objectives We sought to review the clinical, immunologic, and histopathologic phenotypes of APDS2 in a genetically defined international patient cohort. Methods The medical and biological records of 36 patients with genetically diagnosed APDS2 were collected and reviewed. Results Mutations within splice acceptor and donor sites of exon 11 of the PIK3R1 gene lead to APDS2. Recurrent upper respiratory tract infections (100%), pneumonitis (71%), and chronic lymphoproliferation (89%, including adenopathy [75%], splenomegaly [43%], and upper respiratory tract lymphoid hyperplasia [48%]) were the most common features. Growth retardation was frequently noticed (45%). Other complications were mild neurodevelopmental delay (31%); malignant diseases (28%), most of them being B-cell lymphomas; autoimmunity (17%); bronchiectasis (18%); and chronic diarrhea (24%). Decreased serum IgA and IgG levels (87%), increased IgM levels (58%), B-cell lymphopenia (88%) associated with an increased frequency of transitional B cells (93%), and decreased numbers of naive CD4 and naive CD8 cells but increased numbers of CD8 effector/memory T cells were predominant immunologic features. The majority of patients (89%) received immunoglobulin replacement; 3 patients were treated with rituximab, and 6 were treated with rapamycin initiated after diagnosis of APDS2. Five patients died from APDS2-related complications. Conclusion APDS2 is a combined immunodeficiency with a variable clinical phenotype. Complications are frequent, such as severe bacterial and viral infections, lymphoproliferation, and lymphoma similar to APDS1/PASLI-CD. Immunoglobulin replacement therapy, rapamycin, and, likely in the near future, selective phosphoinositide 3-kinase δ inhibitors are possible treatment options

    The impact of maternal HIV infection on cord blood lymphocyte subsets and cytokine profile in exposed non-infected newborns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children born to HIV+ mothers are exposed intra-utero to several drugs and cytokines that can modify the developing immune system, and influence the newborn's immune response to infections and vaccines. We analyzed the relation between the distribution of cord blood lymphocyte subsets and cytokine profile in term newborns of HIV+ mothers using HAART during pregnancy and compared them to normal newborns.</p> <p>Methods</p> <p>In a prospective, controlled study, 36 mother-child pairs from HIV+ mothers and 15 HIV-uninfected mothers were studied. Hematological features and cytokine profiles of mothers at 35 weeks of pregnancy were examined. Maternal and cord lymphocyte subsets as well as B-cell maturation in cord blood were analyzed by flow cytometry. The non-stimulated, as well as BCG- and PHA-stimulated production of IL2, IL4, IL7, IL10, IL12, IFN-γ and TNF-alpha in mononuclear cell cultures from mothers and infants were quantified using ELISA.</p> <p>Results</p> <p>After one year follow-up none of the exposed infants became seropositive for HIV. An increase in B lymphocytes, especially the CD19/CD5+ ones, was observed in cord blood of HIV-exposed newborns. Children of HIV+ hard drug using mothers had also an increase of immature B-cells. Cord blood mononuclear cells of HIV-exposed newborns produced less IL-4 and IL-7 and more IL-10 and IFN-γ in culture than those of uninfected mothers. Cytokine values in supernatants were similar in infants and their mothers except for IFN-γ and TNF-alpha that were higher in HIV+ mothers, especially in drug abusing ones. Cord blood CD19/CD5+ lymphocytes showed a positive correlation with cord IL-7 and IL-10. A higher maternal age and smoking was associated with a decrease of cord blood CD4+ cells.</p> <p>Conclusions</p> <p>in uninfected infants born to HIV+ women, several immunological abnormalities were found, related to the residual maternal immune changes induced by the HIV infection and those associated with antiretroviral treatment. Maternal smoking was associated to changes in cord CD3/CD4 lymphocytes and maternal hard drug abuse was associated with more pronounced changes in the cord B cell line.</p

    Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells

    No full text
    Long-lived antibody memory is mediated by the combined effects of long-lived plasma cells (PCs) and memory B cells generated in response to T cell–dependent antigens (Ags). IL-10 and IL-21 can activate multiple signaling pathways, including STAT1, STAT3, and STAT5; ERK; PI3K/Akt, and potently promote human B cell differentiation. We previously showed that loss-of-function mutations in STAT3, but not STAT1, abrogate IL-10– and IL-21–mediated differentiation of human naive B cells into plasmablasts. We report here that, in contrast to naive B cells, STAT3-deficient memory B cells responded to these STAT3-activating cytokines, differentiating into plasmablasts and secreting high levels of IgM, IgG, and IgA, as well as Ag-specific IgG. This was associated with the induction of the molecular machinery necessary for PC formation. Mutations in IL21R, however, abolished IL-21–induced responses of both naive and memory human B cells and compromised memory B cell formation in vivo. These findings reveal a key role for IL-21R/STAT3 signaling in regulating human B cell function. Furthermore, our results indicate that the threshold of STAT3 activation required for differentiation is lower in memory compared with naive B cells, thereby identifying an intrinsic difference in the mechanism underlying differentiation of naive versus memory B cells.This work was funded by project and program grants from the National Health and Medical Research Council (NHMRC) of Australia (to E.K. Deenick, C.S. Ma, D.A. Fulcher, M.C. Cook, and S.G. Tangye) and the Rockefeller University Center for 541 Clinical and Translational science (5UL1RR024143 to J.L. Casanova). C.S. Ma is a recipient of a Career Development Fellowship, L.J. Berglund is a recipient of a Medical Postgraduate Scholarship, and S.G. Tangye is a recipient of a Principal Research Fellowship from the NHMRC of Australia. L. Moens is the recipient of a Postdoctoral Fellowship from the Research Foundation-Flanders (FWO), Belgium

    Toll-Like Receptor Agonists Synergize with CD40L to Induce Either Proliferation or Plasma Cell Differentiation of Mouse B Cells

    Get PDF
    In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response

    Negative Supercoiling Creates Single-Stranded Patches of DNA That Are Substrates for AID–Mediated Mutagenesis

    Get PDF
    Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates—which we found to be unique to actively transcribed genes—as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID
    corecore