746 research outputs found

    Quickening the Memory

    Get PDF

    A Mental Attitude

    Get PDF

    Weak radiative hyperon decays, Hara's theorem and the diquark

    Get PDF
    Weak radiative hyperon decays are discussed in the diquark-level approach. It is pointed out that in the general diquark formalism one may reproduce the experimentally suggested pattern of asymmetries, while maintaining Hara's theorem in the SU(3) limit. At present, however, no detailed quark-based model of parity-violating diquark-photon coupling exists that would have the necessary properties.Comment: 10 pages, LaTe

    Weak Hyperon Decays: Quark Sea and SU(3) Symmetry Breaking

    Full text link
    An explanation of the difference in the values of the apparent f/df/d ratios for the S- and P- wave amplitudes of nonleptonic hyperon decays is proposed. The argument is formulated in the framework of the standard pole model with (56,0+)(56,0^{+}) ground-state and (70,1)(70,1^{-}) excited baryons as intermediate states for the P- and S- waves respectively. Under the assumption that the dominant part of the deviation of (f/d)Pwave(f/d)_{P-wave} from 1-1 is due to large quark sea effects, SU(3)SU(3) symmetry breaking in energy denominators is shown to lead to a prediction for (f/d)Swave(f/d)_{S-wave} which is in excellent agreement with experiment. This corroborates our previous unitarity calculations which indicated that the matrix elements of the parity conserving weak Hamiltonian between the ground-state baryons are characterized by f0/d01.6f_{0}/d_{0} \approx -1.6 or more. A brief discussion of the problem of the relative size of S- and P- wave amplitudes is given. Finally, implications for weak radiative hyperon decays are also discussed.Comment: 26 pages, LATEX, 1647/PH IFJ Krako

    Spontaneous time reversal symmetry breaking in the pseudogap state of high-Tc superconductors

    Full text link
    When matter undergoes a phase transition from one state to another, usually a change in symmetry is observed, as some of the symmetries exhibited are said to be spontaneously broken. The superconducting phase transition in the underdoped high-Tc superconductors is rather unusual, in that it is not a mean-field transition as other superconducting transitions are. Instead, it is observed that a pseudo-gap in the electronic excitation spectrum appears at temperatures T* higher than Tc, while phase coherence, and superconductivity, are established at Tc (Refs. 1, 2). One would then wish to understand if T* is just a crossover, controlled by fluctuations in order which will set in at the lower Tc (Refs. 3, 4), or whether some symmetry is spontaneously broken at T* (Refs. 5-10). Here, using angle-resolved photoemission with circularly polarized light, we find that, in the pseudogap state, left-circularly polarized photons give a different photocurrent than right-circularly polarized photons, and therefore the state below T* is rather unusual, in that it breaks time reversal symmetry11. This observation of a phase transition at T* provides the answer to a major mystery of the phase diagram of the cuprates. The appearance of the anomalies below T* must be related to the order parameter that sets in at this characteristic temperature .Comment: 11 pages, 4 figure

    Progress in development of the readout chip for the ATLAS semiconductor tracker

    Get PDF
    The development of the ABCD chip for the binary readout of silicon strip detectors in the ATLAS Semiconductor Tracker has entered a pre-production prototyping phase. Following evaluation of the ABCD2T prototype chip, necessary correction in the design have been implemented and the ABCD3T version has been manufactured in the DMILL process. Design issues addressed in the ABCD3T chip and performance of this pre-production prototype are discussed
    corecore