1,300 research outputs found

    Compliant rolling-contact architected materials for shape reconfigurability.

    Get PDF
    Architected materials can achieve impressive shape-changing capabilities according to how their microarchitecture is engineered. Here we introduce an approach for dramatically advancing such capabilities by utilizing wrapped flexure straps to guide the rolling motions of tightly packed micro-cams that constitute the material's microarchitecture. This approach enables high shape-morphing versatility and extreme ranges of deformation without accruing appreciable increases in strain energy or internal stress. Two-dimensional and three-dimensional macroscale prototypes are demonstrated, and the analytical theory necessary to design the proposed materials is provided and packaged as a software tool. An approach that combines two-photon stereolithography and scanning holographic optical tweezers is demonstrated to enable the fabrication of the proposed materials at their intended microscale

    Voice control of the space shuttle video system

    Get PDF
    A pilot voice control system developed at the Jet Propulsion Laboratory (JPL) to test and evaluate the feasibility of controlling the shuttle TV cameras and monitors by voice commands utilizes a commercially available discrete word speech recognizer which can be trained to the individual utterances of each operator. Successful ground tests were conducted using a simulated full-scale space shuttle manipulator. The test configuration involved the berthing, maneuvering and deploying a simulated science payload in the shuttle bay. The handling task typically required 15 to 20 minutes and 60 to 80 commands to 4 TV cameras and 2 TV monitors. The best test runs show 96 to 100 percent voice recognition accuracy

    Mapping the Kinematical Regimes of Semi-Inclusive Deep Inelastic Scattering

    Get PDF
    We construct a language for identifying kinematical regions of transversely differential semi-inclusive deep inelastic scattering cross sections with particular underlying partonic pictures, especially in regions of moderate to low QQ where sensitivity to kinematical effects outside the usual very high energy limit becomes non-trivial. The partonic pictures map to power law expansions whose leading contributions ultimately lead to well-known QCD factorization theorems. We propose methods for estimating the consistency of any particular region of overall hadronic kinematics with the kinematics of a given underlying partonic picture. The basic setup of kinematics of semi-inclusive deep inelastic scattering is also reviewed in some detail.Comment: 37 pages, 11 Figure

    Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy

    Get PDF
    Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities. We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an external set of optics which modulates the polarization state of the incoming radiation before entering the cryostat window; (2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range of science studies which will be possible with these upgrades including magnetic fields in star-forming regions and galaxies and the wavelength-dependence of polarization.Comment: 12 pages, 5 figure

    The Kepler Pixel Response Function

    Full text link
    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurements of the PRF across the Kepler field of view are described. Two uses of the PRF are presented: the selection of pixels for each star that maximizes the photometric signal to noise ratio for that star, and PRF-fitted centroids which provide robust and accurate stellar positions on the CCD, primarily used for attitude and plate scale tracking. Good knowledge of the PRF has been a critical component for the successful collection of high-precision photometry by Kepler.Comment: 10 pages, 5 figures, accepted by ApJ Letters. Version accepted for publication

    CMBPol Mission Concept Study: Prospects for polarized foreground removal

    Get PDF
    In this report we discuss the impact of polarized foregrounds on a future CMBPol satellite mission. We review our current knowledge of Galactic polarized emission at microwave frequencies, including synchrotron and thermal dust emission. We use existing data and our understanding of the physical behavior of the sources of foreground emission to generate sky templates, and start to assess how well primordial gravitational wave signals can be separated from foreground contaminants for a CMBPol mission. At the estimated foreground minimum of ~100 GHz, the polarized foregrounds are expected to be lower than a primordial polarization signal with tensor-to-scalar ratio r=0.01, in a small patch (~1%) of the sky known to have low Galactic emission. Over 75% of the sky we expect the foreground amplitude to exceed the primordial signal by about a factor of eight at the foreground minimum and on scales of two degrees. Only on the largest scales does the polarized foreground amplitude exceed the primordial signal by a larger factor of about 20. The prospects for detecting an r=0.01 signal including degree-scale measurements appear promising, with 5 sigma_r ~0.003 forecast from multiple methods. A mission that observes a range of scales offers better prospects from the foregrounds perspective than one targeting only the lowest few multipoles. We begin to explore how optimizing the composition of frequency channels in the focal plane can maximize our ability to perform component separation, with a range of typically 40 < nu < 300 GHz preferred for ten channels. Foreground cleaning methods are already in place to tackle a CMBPol mission data set, and further investigation of the optimization and detectability of the primordial signal will be useful for mission design.Comment: 42 pages, 14 figures, Foreground Removal Working Group contribution to the CMBPol Mission Concept Study, v2, matches AIP versio

    A survey of anisotropic energetic particle flows observed by STEREO

    Get PDF
    The Low Energy Telescopes (LETs) onboard the twin STEREO spacecraft have been measuring the anisotropies of energetic particles since before the beginning of solar cycle 24. Large unidirectional anisotropies often appear at the onset of magnetically well-connected solar energetic particle (SEP) events, suggesting beamed particles with relatively little scattering. Also, long-lasting bidirectional flows are seen during the decay phase of several SEP events. Some of these instances appear to be within interplanetary coronal mass ejections (ICMEs), as indicated by characteristics such as magnetic field rotations or bidirectional suprathermal electrons. We present preliminary findings from a survey of LET proton anisotropy observations, which illustrate that bidirectional flows appear more likely to come from directions far from the nominal Parker spiral direction than do unidirectional beams, consistent with previous studies. Individual cases that show unusual intensity depletions perpendicular to the magnetic field or pitch angle distributions otherwise indicative of magnetic mirroring are presented in more detail

    Hertz: an imaging polarimeter

    Get PDF
    The University of Chicago polarimeter, Hertz, is designed for observations at the Caltech Submillimeter Observatory in the 350 µm atmospheric window. Initial observations with this instrument, the first array polarimeter for submillimeter observations, have produced over 700 measurements at 3σ or better. This paper summarizes the characteristics of the instrument, presents examples of its performance including polarization maps of molecular clouds and regions near the Galactic center, and outlines the opportunities for improvements with emphasis on requirements for mapping widely extended sources

    Instrument Performance in Kepler's First Months

    Full text link
    The Kepler Mission relies on precise differential photometry to detect the 80 parts per million (ppm) signal from an Earth-Sun equivalent transit. Such precision requires superb instrument stability on time scales up to ~2 days and systematic error removal to better than 20 ppm. To this end, the spacecraft and photometer underwent 67 days of commissioning, which included several data sets taken to characterize the photometer performance. Because Kepler has no shutter, we took a series of dark images prior to the dust cover ejection, from which we measured the bias levels, dark current, and read noise. These basic detector properties are essentially unchanged from ground-based tests, indicating that the photometer is working as expected. Several image artifacts have proven more complex than when observed during ground testing, as a result of their interactions with starlight and the greater thermal stability in flight, which causes the temperature-dependent artifact variations to be on the timescales of transits. Because of Kepler's unprecedented sensitivity and stability, we have also seen several unexpected systematics that affect photometric precision. We are using the first 43 days of science data to characterize these effects and to develop detection and mitigation methods that will be implemented in the calibration pipeline. Based on early testing, we expect to attain Kepler's planned photometric precision over 80%-90% of the field of view.Comment: 5 pages, 2 figures, 2 tables, Astrophysical Journal Letters, accepte
    corecore