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1 Introduction

Deep inelastic scattering (DIS), and especially semi-inclusive deep inelastic scattering

(SIDIS) are headlining processes in most programs to the study of partonic (quark and

gluon) degrees of freedom. It is a cornerstone process of, for example, the Jefferson Lab

12 GeV program to study partonic structure in hadrons, and is one of the important pro-

cesses for study in a future Electron-Ion Collider (EIC) [1–6]. Interest in SIDIS arises from

a variety of considerations. Well-established collinear factorization theorems for SIDIS

provide access to the flavor dependence of standard parton distribution functions (PDFs)

and fragmentation functions (FFs) in the so-called current fragmentation region. In the
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target fragmentation region, different kinds of objects, called fracture functions [7, 8], are

involved and these are sensitive to still other novel QCD phenomena. Beyond collinear

factorization, transversely differential SIDIS at low transverse momentum is sensitive to

the properties of transverse momentum dependent (TMD) PDFs and FFs.

Many DIS experiments are performed at moderate-to-low Q (roughly 1-3 GeV),1 where

non-perturbative effects are significant and it is reasonable to expect sensitivity to intrin-

sic properties of hadrons. The moderate-to-low Q region has some obvious advantages in

the mission to refine the current view of hadron structure. If all energies and hard scales

are extremely large, then asymptotic freedom means that pictures of partonic interactions

rooted in perturbation theory can usually be applied confidently and with very high accu-

racy and precision. But, with the large relative fraction of the hard process contributions

and perturbatively produced radiation involved, it becomes less clear to what extent ob-

servables are truly sensitive to the intrinsic properties of the actual hadron constituents.

This further points to moderate-to-low Q measurements as ideal sources of information

about partonic hadron structure. However, there are also unique challenges to interpreting

moderate-to-low Q cross sections, particularly for less inclusive versions of DIS like SIDIS.

With lower hard scales, access to intrinsic effects of constituents may be more direct, but

this also comes with less confidence in the reliability and accuracy of perturbative and/or

parton-based descriptions. Moreover, the average final state hadron multiplicity in such

measurements is typically very low in the valence region of Bjorken-xBj. In long term efforts

to establish intrinsic properties for partons, the trade-off in advantages at large and small

Q needs to be confronted systematically, and such that knowledge of one complements

the other.

Sophisticated theoretical frameworks, usually involving some form of QCD factoriza-

tion and perturbation theory [9–11] have long existed for describing specific underlying

physical mechanisms in many highly differential processes over many regions, including in

SIDIS, in terms of partonic degrees of freedom. However, they always assume specific kine-

matical limiting cases, e.g. very large or very small transverse momentum, or very large

or very small rapidity. The interface between different physical regimes remains some-

what unclear in practice, and most especially when the hard scales involved are not large.

Estimating the kinematical boundaries of any specific QCD approach or approximation

beyond very rough orders of magnitude is difficult and subtle. Within the current experi-

mental and phenomenological knowledge it requires at least some model assumptions, e.g.

about the role of parton virtuality and/or the onset of various non-perturbative or hadronic

mechanisms generally. Monte Carlo simulations can help, but these also involve physical

assumptions whose impact needs to be understood systematically. Future phenomenolog-

ical and experimental efforts will hopefully clarify the location of region boundaries, and

discriminate between competing hypotheses.

The aim of the present article is to discuss how such questions can be posed in a

systematic way. To this end, we will refrain from discussing specific theoretical frameworks

1By “moderate-to-low Q,” we will mean SIDIS measurements with Q roughly between 1 GeV and 3 GeV

and Bjorken-xBj not too far below the valence region. This includes, in particular, JLab 6 GeV and 12 GeV

SIDIS cross section measurements [1, 4, 6].
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and instead enumerate the steps needed to map any given set of assumptions concerning

exact intrinsic partonic/constituent properties to a corresponding kinematical region of

xBj, Q, zh, and transverse momentum in a cross section. The goal is to construct basic

elements needed for an interpretation strategy applicable with any model of underlying

non-perturbative dynamics for exact parton momentum, independent even of assumptions

about factorization. Our final result is a set of novel region indicators2 expressed in terms of

partonic and hadronic degrees of freedom that probe the proximity of any given kinematical

configuration to a particular conventional partonic region of SIDIS; such as current region,

target fragmentation region, or soft region.

In the first part of the paper we provide an overview of the SIDIS process, in some

cases translating past results into an updated language, motivated by current research

efforts.3 section 2 treats the kinematics, notation and setup, and explains the kinematical

characterization of final state hadron momentum. In section 2 we also introduce the cross

section and its exact decomposition in terms of structure functions, for which we extend

the sum rule derived originally in ref. [20].

In the second part of the paper, section 3, we discuss the standard approximations

used to characterize SIDIS processes, and focusing on those of purely kinematical origin we

propose a simple test of the quality of the commonly used massless-hadron approximation

(MHA) [23]. In section 4 we explain the characterization of partonic kinematics and es-

tablish a language to connect such pictures to specific observable kinematical regions, with

a focus on the current fragmentation section 4.1 and large transverse momentum regimes

section 4.2. In section 4.3 we discuss the target and soft regions. In section 5, we pro-

vide some examples of the region characterization in terms of the R ratios, within typical

experimental kinematics. Finally, we make concluding remarks in section 6.

2 The SIDIS process

We consider the process:

lepton(l) + proton(P )→ lepton(l′) + Hadron(PB) +X . (2.1)

The final state hadron has type B. The “X” is an instruction to sum over all unobserved

particles including other B type hadrons. A sketch is shown in figure 1.4 The proton has

momentum P , the virtual photon has momentum q, the produced hadron has momentum

PB, and the incoming and scattered leptons have momenta l and l′ respectively. The mass

of the target hadron is M and the mass of the produced hadron is MB.

2We provide a convenient web interface which can be found at ref. [12].
3For general introductions to SIDIS in pQCD see, for example, refs. [13–18]. See refs. [19–22] for review

of the basics of SIDIS that includes a full catalogue of spin and azimuthal dependencies. For general

treatments of SIDIS in the context of fracture functions and target fragmentation, see ref. [8]. Also see

chapters 12–13 of ref. [11], which influences much of the language and notation of this article.
4In this figure we followed the so-called Trento conventions [24].
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Figure 1. The diagram of a SIDIS event in a photon frame. The hadron plane is shown in purple.

The dashed green lines represent unobserved particles.

Observables, like cross sections or structure functions, are conventionally parameterized

by a combination of the following kinematical variables:

Q2 = −q2 = −(l − l′)2 , xBj =
Q2

2P · q ,

xN= − q
+

P+
=

2xBj

1 +

√
1 +

4x2BjM
2

Q2

, (2.2)

y =
P · q
P · l , zh =

P · PB

P · q = 2xBj
P · PB

Q2
, zN =

P−B
q−

, (2.3)

W 2
tot = (q + P )2 , W 2

SIDIS = (q + P − PB)2 , s = (l + P )2 . (2.4)

In the expressions of the light-cone ratios that define xN and zN, momentum compo-

nents q±, P+ and P−B are defined in a photon frame, figure 1, where the incoming proton

is in the positive z-direction with zero transverse momentum and the virtual photon is the

negative z-direction with no transverse momentum.

Since boosts along the z-axis do not affect light-cone ratios, the exact photon frame

does not matter. The variable xN is the kinematical variable usually called Nachtmann-x. It

is often labeled by a ξ in the literature, but for us ξ will label a partonic momentum fraction,

so we use xN instead; with the subscripts on xN and xBj distinguishing between Bjorken

and Nachtmann x-variables. For descriptions of fragmentation, the light-cone fraction zN

is the analogue of xN, and the N subscript is meant to emphasize this analogy. Our xBj,

zh and PB correspond, respectively, to x, z and Ph from ref. [20]. Our zN corresponds to

ζh of ref. [25]. A variable

xh =
q · PB

P · q (2.5)

is useful if the target fragmentation region is being described.
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The deep inelastic limit is m/Q → ∞ with fixed xN and zN. The “m” symbol will

always represent a generic mass scale in this paper, considered to be very small relative to

Q, such as a small hadron mass or ΛQCD. The kinematical variables obey

Q2 = xBjy(s−M2 −m2
l ) ≈ xBjys . (2.6)

The “≈” symbol will always mean “dropping m/Q power-suppressed corrections” with xN

and zN fixed.

Next we treat the final state B momentum in terms of the light-cone momentum

fraction zN, eq. (2.3), variable and relate it to the transverse momentum of the photon. In

order to do this it is important to be able to express the final state momentum in both the

photon and hadron frames.

2.1 Reference frames

To establish our notation we will use the following representation of virtual photon and

hadron momenta in photon and hadron reference frames in light-cone coordinates and

rapidity.5

2.1.1 Photon frame

In a photon frame, the virtual photon and the initial proton both have zero transverse

momentum, while the final state produced hadron has non-zero transverse momentum:

qγ =

(
−xNP

+
γ ,

Q2

2xNP
+
γ
,0 T

)
, (2.7)

Pγ =

(
P+
γ ,

M2

2P+
γ
,0 T

)
, (2.8)

PB,γ =

(
P2

B,γ,T +M2
B

2P−B,γ
, P−B,γ ,PB,γ,T

)
. (2.9)

Note that eq. (2.7) fixes xN to be defined as in eq. (2.2).

The γ subscript signals the use of components in the photon frame, following the

notation of eq. (A.7). In the photon frame

P−B,γ =
zhQ

2

4xBjP
+
γ


1±

√√√√
1−

4x2
BjM

2
(
P2

B,γ,T +M2
B

)

z2
hQ

4


 ≈ zhQ

2

2xBjP
+
γ
, (2.10)

where the approximation symbol shows the limit of zero hadron masses for the solution,

“+”, corresponding to the current fragmentation region. Note that ratios of plus and minus

components are independent of boosts in the z-direction, and so are the same in all photon

frames.

5See appendix A and appendix E for conventions on light-cone coordinates and rapidity respectively.
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Figure 2. The configuration of the proton, photon, and outgoing hadron in (a) the Breit photon

frame and (b) the hadron frame. The dashed green lines again represent unobserved particles.

2.1.2 Hadron frame

In the hadron frame, see figure 2(b), labeled by “H,” the incoming hadron and final state

hadron are exactly back-to-back (zero relative transverse momentum) while the virtual pho-

ton generally has non-zero transverse momentum. It is an especially useful frame for setting

up factorization. (See [11, section13.15.5].) The components of the four-momenta are:

qH =
(
q+

H , q
−
H ,qH,T

)
, (2.11)

PH =

(
P+

H ,
M2

2P+
H

,0 T

)
, (2.12)

PB,H =

(
M2

B

2P−B,H
, P−B,H,0 T

)
. (2.13)

For definiteness, we express the hadron frame such that the components of the incoming

target momentum are exactly the same as in the Breit frame:

P+
H = P+

γ =
Q√
2xN

, (2.14)

P−H = P−γ =
xNM

2

√
2Q

, (2.15)

PH,T = 0 T . (2.16)

2.1.3 Breit frame

A particular case of the photon frame is the Breit (Brick Wall) frame, see figure 2(a), where

qb =

(
− Q√

2
,
Q√

2
,0 T

)
, (2.17)

Pb =

(
Q

xN

√
2
,
xNM

2

√
2Q

,0 T

)
=

(
M√

2
eyP,b ,

M√
2
e−yP,b ,0 T

)
. (2.18)

The small b indicates that components are in the Breit frame. This will be our default

frame, so any four-momentum components without a subscript should be assumed to be

in the Breit frame.
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Now we specialize to the Breit frame, where the exact final state hadron PB,b as

measured in experiment is

PB,b =

(
M2

B,T

2P−B,b
, P−B,b,PB,b,T

)
=

(
MB,T√

2
eyB,b ,

MB,T√
2

e−yB,b ,PB,b,T

)
, (2.19)

where MB,T =
√
M2

B + P2
B,b,T is the transverse mass, yB,b is the produced hadron rapidity,

and P−B,b = zNq
−
b = zNQ/

√
2 .

It is then convenient to express PB,b in the Breit frame in terms of zN, eq. (2.3), and

a new variable qT as follows

PB,b =

(
M2

B + z2
Nq

2
T√

2zNQ
,
zNQ√

2
,−zNqT

)
, (2.20)

where qT is so far only a symbol used to define the Breit frame transverse component, and

it has yet to be related to physical quantities. Such parameterization of the final hadron

momentum is convenient for some purposes such as in factorization derivations. Vector qT

in the Breit frame is

qT ≡ −
PB,b,T

zN
= −

q−b PB,b,T

P−B,b
. (2.21)

Note the minus sign. The momentum fraction zN is related to the kinematical parameter

zh by

zN =

Q4xNzh

(
1±

√
1− 4M2M2

Bx
2
Bj(Q

4+x2NM
2q2

T)

Q8z2h

)

2xBj(Q4 + x2
NM

2q2
T)

Fixed xN,zh,qT= zh

(
1 +O

(
m4

Q4

))
.

(2.22)

Note that the relationship between zN and zh is generally double valued. The expansion

after the far right equals sign in eq. (2.22) is for the “+” solution, which in conventional

treatment of SIDIS corresponds to the current fragmentation region.

Another way to establish the connection of the momentum fractions zh and zN is by

utilizing the transverse mass MB,T and experimentally measured PB,b,T. Let us start by

using the definition of zh from eq. (2.3):

zh =
xBjzN

xN

(
1 +

x2
NM

2M2
B,T

z2
NQ

4

)
. (2.23)

The inverse, for the “+” solution, is

zN =
xNzh

2xBj


1 +

√
1−

4M2M2
B,Tx

2
Bj

Q4z2
h


 ≈ zh . (2.24)

Note that eq. (2.22) and eq. (2.24) are related upon substitution from eq. (2.21). See also

ref. [25, eq. (2.12)]. Note that xN is a function of xBj, Q, and M , but we will sometimes

– 7 –
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keep it in formulas in order to minimize the size of expressions such as in eq. (2.24) rather

than writing everything explicitly in terms of xBj, Q, and M .

Now we use the Lorentz transformations of light-cone vectors between the photon (e.g.

Breit) and hadron frames: for this we have presented a detailed treatment how to transform

a four vector V from the Breit frame to the hadron frame in a light cone representation in

appendix B (see eqs. (B.2)–(B.4)). We use these results in the limit that the masses are

small relative to Q which are

V +
H ≈ V +

b +
q2

T

Q2
V −b +

√
2

Q
qT ·Vb,T , (2.25)

V −H ≈ V −b , (2.26)

VH,T ≈ Vb,T + qT

√
2V −b
Q

. (2.27)

Now using eq. (2.17) in eq. (2.27), yields

qH,T ≈ qT . (2.28)

Finally using eq. (2.21) and eq. (2.22) we conclude that

qH,T ≈ −
PB,b,T

zh
≈ qT , (2.29)

which means that up to m/Q-suppressed corrections the transverse vector qT introduced

in eq. (2.20) to parametrize the final hadron transverse momentum in the Breit frame is

equal to the hadron frame photon transverse momentum qH,T, which in turn is equal to

−PB,b,T/zh. Here as usual, the ≈ symbol means neglecting m/Q-suppressed corrections.

2.2 The SIDIS cross section

In this sub-section we consider the cross-section of the SIDIS process, and translate past

results into an updated language, motivated by current research efforts; e.g. to interpret

moderate-to-low Q cross sections. In particular we establish an extension for the SIDIS

cross section to where the structure functions depend not only on PB,T, xN and zN but

also on hadron masses M and MB. In order to show/demonstrate this, we briefly review

the definitions of both the DIS and SIDIS cross sections.

We start by writing down the total DIS cross section,

E′
dσtot

d3l′
=

2α2
em

(s−M2)Q4
LµνW

µν
tot . (2.30)

This fixes the normalization convention for the hadron and lepton tensor combination

LµνW
µν
tot , where the “tot”-subindex indicates that this is conventional DIS: totally inclusive

in all final state hadrons. Recall figure 1 and eq. (2.1) for our momentum labeling. The

leptonic tensor is defined in the usual way:

Lµν = 2(lµl
′
ν + l′µlν − gµν l · l′) , (2.31)

– 8 –



J
H
E
P
1
0
(
2
0
1
9
)
1
2
2

and the totally inclusive hadronic tensor is

Wµν
tot(P, q) ≡ 4π3

∑

X

δ(4)(P + q − PX) 〈P, S|jµ(0)|X〉〈X|jν(0)|P, S〉 . (2.32)

Here, the
∑

X symbol is a sum over all possible final states |X〉, including invariant

integrals, ∫
d3pi

2Epi(2π)3
· · ·

over the momentum of each final state particle pi. The incoming hadron has a polarization

specified by S.

Now we write down the SIDIS cross section, differential in the momentum of the final

state hadron of type B, which can be expressed in terms of the leptonic and hadronic

tensors as follows:

4PB
0E′

dσ

d3l′ d3PB

=
2α2

em

(s−M2)Q4
LµνW

µν
SIDIS . (2.33)

Similarly as to the DIS case, this fixes our normalization conventions for SIDIS, and gives

a SIDIS hadronic tensor:

Wµν
SIDIS(P, q, PB) ≡

∑

X

δ(4)(P +q−PB−PX) 〈P, S|jµ(0)|PB, X〉〈PB, X|jν(0)|P, S〉 . (2.34)

The same meaning applies to
∑

X as in the totally inclusive case. |PB, X〉 is a final state

with at least one identified hadron of type B. The sum over X includes a sum over any

number of other final state particles, including other type-B hadrons. Each separate type-

B hadron in an event is counted, in accordance with the definition of an inclusive cross

section. More details on the SIDIS differential cross sections are given in appendix C.

The hadronic tensors Wµν
tot(P, q) and Wµν

SIDIS(P, q, PB) are the most convenient objects

to work with theoretically because they are directly related to hadronic matrix elements of

the electromagnetic current operator, and they are defined without reference to conventions

associated with choices of reference frames etc, so we will organize our structure function

analysis around them.

Now we establish the relationship between the semi-inclusive and totally inclusive cross

sections (see [26, Chapt. VII]):

∑

B

∫
d3PB

dσ

d3PB
= 〈N〉σtot , (2.35)

where 〈N〉 is the total average particle multiplicity, and the sum is over all particle types.

Thus,

∑

B

∫
d2PB,b,T dP zB

4P 0
B

Wµν
SIDIS =

∑

B

∫
d2PB,b,T dzN

4zN
Wµν

SIDIS = 〈N〉Wµν
tot . (2.36)

Note that the integration measure in eq. (2.36) is Lorentz invariant, although we will

continue to specify a photon frame for the components, both for definiteness and because

zN is defined in terms of a photon frame momentum fraction.

– 9 –
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Using the standard definitions of the structure function decompositions for Wµν
tot and

Wµν
SIDIS, we express the SIDIS cross section the in the Breit frame (or any photon frame),

dσ

dxBj dy dψ dzh d2PB,b,T

=
α2

emy

4zhxBjQ2(1− ε)
1√

1− 4M2x2BjM
2
B,T

Q4z2h

[
FT + εFL + Pol. Dep.

]
,

(2.37)

where FT and FL are definitions generalized from the inclusive case to SIDIS and “Pol.

Dep.” indicates the presence of polarization and azimuthal dependent terms ( see ap-

pendix C for details). The Jacobian factor in eq. (2.37), that contains the final hadron

transverse mass, can be expressed in terms of combinations of zN and zh, but we keep the

square root factors explicit to highlight the dependence on transverse momentum via M2
B,T

at fixed zh.

Now, to reproduce the equations of ref. [20], one may define barred structure functions:

F̄j =
1

4zh

(
1 + γ2

2xBj

) Fj√
1− 4M2x2BjM

2
B,T

Q4z2h

, (2.38)

with γ ≡ 2MxBj/Q. Substituting eq. (2.37) into eq. (2.37) gives

dσ

dxBj dy dψ dzh d2PB,b,T

=
α2

emy

xBjQ2(1− ε)

(
1 +

γ2

2xBj

)[
F̄T + εF̄L + Pol. Dep.

]
, (2.39)

where now [20, eq. (2.7)] can be used to fill in the remaining polarization and φ-dependent

structure functions.

We emphasize that eq. (2.37) is an exact expression, where no approximation has been

made. Thus, the structure functions depend not only on PB,T, xN and zN but also on

hadron masses M and MB. It is important to highlight the role of the final hadron mass,

which couples transverse momentum to other kinematical variables, as can be seen from

the Jacobian in eq. (2.37). The barred normalization convention in eq. (2.38) is defined so

that structure functions exactly obey a particularly convenient energy sum rule found in

ref. [20, eqs. (2.18)–(2.21)]:

∑

B

∫
dzh d2PB,b,T zhF̄j = F tot

j . (2.40)

Note that the general derivation of the sum rule eq. (2.40) does not follow trivially from

that presented in ref. [20], due to presence of the factor containing M2
B,T in eq. (2.38). A

new derivation of eq. (2.40) is presented in appendix D.

3 Kinematical approximations

Since we have not discussed the theory underlying the structure functions, all small mass

approximations mentioned so far are unambiguously kinematical. For example, the usual
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xN ≈ xBj and zN ≈ zh follow from expanding in x2
BjM

2/Q2:

xN = xBj

[
1−

x2
BjM

2

Q2
+O

(
x4

BjM
4

Q4

)]
, (3.1)

zN = zh


1−

x2
BjM

2

Q2

(
1 +

P2
B,b,T

z2
hQ

2

)
+

(
x2

BjM
2

Q2

)2(
P2

B,b,T

z2
hQ

2
−

P4
B,b,T

z4
hQ

4
+ 2− M2

B

z2
hM

2x2
Bj

)

+O

(
x6

BjM
6

Q6

)]
. (3.2)

If hadron masses are neglected, then P and PB become the approximate P̃ and P̃B, which

we define as

P̃b =

(
Q

xBj

√
2
, 0,0 T

)
, (3.3)

P̃B,b = zh

(
q2

T√
2Q

,
Q√

2
,−qT

)
, (3.4)

that is, eq. (2.18) and eq. (2.19) but with all hadron masses set equal to zero. In the

most common treatments of SIDIS, P and PB in eqs. (C.2)–(C.3) are replaced with P̃ and

P̃B,, and xN and zN are replaced with xBj and zh inside the structure functions, which

is a good approximation in the m/Q → 0 limit as long as the structure functions are

reasonably smooth functions of xN and zN. In ref. [23] that was called the massless target

approximation (MTA) for inclusive DIS, and we extend this to SIDIS. In this case, the

hadronic tensors from eqs. (C.2)–(C.3) become,

W̃µν
tot =

(
−gµν +

qµqν

q2

)
F tot

1 (xBj, Q
2) +

(
P̃µ − qµ P̃ ·q

q2

)(
P̃ ν − qν P̃ ·q

q2

)

P̃ · q
F tot

2 (xBj, Q
2)

+ Pol. Dep. , (3.5)

W̃µν
SIDIS =

(
−gµν +

qµqν

q2

)
F1(xBj, Q

2, zh, P̃B,b,T)

+

(
P̃µ − qµ P̃ ·q

q2

)(
P̃ ν − qν P̃ ·q

q2

)

P̃ · q
F2(xBj, Q

2, zh, P̃B,b,T) + Pol. Dep. . (3.6)

Extracting the structure functions in eqs. (3.5)–(3.6) requires, instead of eqs. (C.11)–

(C.12), the following projectors

P̃µν1 = −1

2
Pµνg +

2x2
Bj

Q2
P̃µνPP , P̃µν2 =

12x3
Bj

Q2
P̃µνPP − xBjP

µν
g , (3.7)

where P̃µνPP = P̃µP̃ ν . Our eq. (3.5) coincides with ref. [23, eq. (18)], with the calligraphic

notation explained there. Equation (3.6) is the analogous approximation for the SIDIS
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Figure 3. The kinematic regions of Q and xBj covered by JLab 12 (left panel), HERMES (central

panel) and COMPASS (right panel). The shaded areas are obtained by applying the appropriate

experimental cuts in each case, as reported in refs. [6, 27, 28]. These plots show that Q and xBj are

strongly correlated: large values of xBj can only be accessed when Q is sufficiently large; conversely,

when Q is relatively small, only limited values of xBj can be reached. The values of xN/xBj, as

obtained using eq. (2.2), are color-coded: the lightest shade corresponds to values very close to one,

while darker shades correspond to regions where the ratio xN/xBj increasingly deviates from 1 and

the quality of the MHA deteriorates. Notice that, while mass corrections are more important for

JLab 12 kinematics, for all three experiments we consider here, the value xN/xBj remains very close

to 1 to a very good approximation.

cross section. The advantage of usage of MHA is that it greatly simplifies kinematical

relations at large Q. The ratios
xN

xBj
,

zN

zh
(3.8)

are measures of the quality of the MHA approximation. They must not deviate too much

from 1 if the standard massless approximations are to be considered valid.6

This discussion exhausts the approximations that can be assessed entirely indepen-

dently of questions about the partonic dynamics responsible for the behavior of the struc-

ture functions themselves. Thus, to test the quality of the MHA-which deteriorates as the

ratios in eq. (3.8) deviate from 1-we study these quantities for some realistic experimen-

tal scenarios.

In figure 3 we display the (Q, xBj) kinematic coverage of three fixed target SIDIS

experiments: JLab 12 (11 GeV electron beam), HERMES (27.5 GeV electron beam) and

COMPASS (160 GeV muon beam). The shaded regions are obtained by applying the

appropriate experimental cuts in each case, as reported in refs. [6, 27, 28]. Notice that the

JLab 12 kinematics covers a very wide range of xBj values, well above 0.6, but it is limited

to intermediate/small values of Q. Instead, the COMPASS kinematics reaches up to much

larger values of Q, but the accessible range of xBj is confined to values no larger than 0.4. In

each plot, the values of the ratio xN/xBj, eq. (2.2), are color coded: darker shades represent

regions where xN/xBj deviates from 1 and thus the MHA approximation deteriorates. As

expected mass corrections are more important at large values of xBj and small values of

Q. All three experiments we consider here, have xN/xBj ≈ 1 within 5%, and thus massless

hadron approximation remain a good approximation for all three experiments provided

that experimental errors are not infinitesimal.

6See section 5 for some examples.
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Figure 4. The ratio zN/zh, eq. (2.24), is represented over the kinematic coverage in (zh, PB,T /Q)

for JLab 12 (left panels), HERMES (central panels) and COMPASS (right panels), at some fixed

values of xBj and Q, as indicated in the plot title. Appropriate experimental cuts, as reported in

refs. [6, 27, 28], are applied in each case. The values of zN/zh, for pion production (upper panels)

and kaon production (lower panels) are obtained using eq. (2.24) and are color-coded: the lightest

shade corresponds to values very close to one, while darker shades correspond to regions where

the ratio zN/zh increasingly deviates from 1 and the quality of the MHA deteriorates. Notice how

deviations from 1 are more sizable as compared to those of xN/xBj in figure 3, particularly in the

JLab case.

Figure 4 shows the ratio zN/zh, within the (zh, PB,T /Q) kinematic coverage of the three

experiments. Again darker shades represent larger deviations from 1 which, in this case,

are more significant than for xBj/xN, especially at JLab kinematics where considerably

wide regions of phase space have zN/zh < 0.9. This demonstrates the significance of mass

correction effects in eq. (3.2). Refs. [25, 29] made first attempts to incorporate kinematical

improvements to collinear QCD factorization by keeping M2
B in kinematical factors. They

point out the importance of this for moderate-to-low Q SIDIS. However, they explicitly

drop P2
B,b,T-dependence in an attempt to stay within a collinear factorization framework.

Note from eq. (3.2), however, that it is not consistent with collinear factorization power

counting to simultaneously retain M2 and M2
B dependent kinematical power corrections

while neglecting P2
B,b,T dependent corrections, even for P2

B,b,T ∼ m2. The first non-

vanishing MB-dependent correction term

M2
B

z2
hM

2x2
Bj

(
x2

BjM
2

Q2

)2

(3.9)

is the same size as the
P2

B,b,T

z2
hQ

2

(
x2

BjM
2

Q2

)
(3.10)
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term when P2
B,b,T is small. And, eq. (3.10) is actually the dominant power-correction term

when P2
B,b,T/z

2
h approaches order Q. The difficulty is that collinear factorization methods

only characterize dependence on light-cone momentum fractions of the final state hadron,

like zN, with only zh, Q, and xBj known. This is not a problem if keeping only the first

term in the expansion on the right of eq. (3.2) is valid. But the exact zN requires knowledge

not just of MB and M , but also of (both small and large) P2
B,b,T/z

2
h. So if it turns out

that final state mass effects are large enough that they have to be accounted for, then it

must be done in combination with an account of small transverse momentum dependence

effects (e.g., TMD factorization), not independently of it.

4 Mapping SIDIS kinematics and partonic subprocesses

In this section we will present the main results of our work. We will establish the correspon-

dence between specific underlying partonic pictures of the SIDIS process and kinematical

regions of experimentally observed cross section.

So far, we have only discussed definitions and relativistic kinematics, with no mention

at all of partons or dynamics. The question now is the following: assuming that the

configuration of initial and final hadrons is the result of scattering and fragmentation by

small-mass constituents (i.e., partons), what are the possible kinematical configurations of

those constituents, given a set of assumptions about their intrinsic properties? For now,

we do not necessarily identify these partons with a particular theoretical approach or even

real QCD, though ultimately we have that in mind.

This kind of very general partonic picture is illustrated in figure 5. We start by

exploring the possibility that the produced hadron is collinear to an outgoing parton (a

“current” hadron). We need clear steps for asking how reasonable it is to assume that

a given external kinematical configuration for measured hadrons maps to current region

partonic kinematics. The incoming hadron and its remnants are represented by the lower

blob while the final state hadron emerges from a final state blob at the top of the diagram.

Dashed lines represent the flow of momentum. It is very important for the discussion below

to understand that they do not necessarily represent single quarks or gluons, and in reality

they may correspond to groups of particles. What is important for us is only the flow of four-

momentum through the process. Moreover, it is assumed that the momenta of these lines

are known exactly and are never approximated. Thus, the graphs should not be viewed as

Feynman graphs used in the calculation of amplitudes, but rather as charts of momentum

flow. Although the word “parton” often implies a massless on-shell approximation for

single particle lines, to keep language reasonably simple, we will nevertheless continue to

call these dashed lines “partons.” The picture in figure 5 does imply that quantities like |k2
i |

and |k2
f | are small, and much of the discussion in this section will be about addressing the

question of what is meant by “small.” So to summarize, “partonic” dashed lines represent

the flow of momentum with small invariant energy. In practical situations, they will often

turn out to refer to actual quark and/or gluon lines, but they do not need to generally.

The partonic subprocess in figure 5 is marked off in a blue box. A black dot indi-

cates the parton we associate with an observed hadron. The momentum ki is the incoming
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P

PB

q

ki

kf

kX

Figure 5. Momentum labeling in the partonic subprocess. The lower blob represent the incoming

hadron. The diagram in the square is the partonic subprocess of interaction of partons and the

virtual photon. Dashed lines represent the flow of momentum. The process of fragmentation of the

outgoing parton into the observed hadron B is represented by the upper blob.

struck parton momentum, and there is at least one hadronizing parton kf . The kX mo-

mentum labels the total momentum of all other unobserved partons combined. Outside

the box in figure 5, the position of the hadron implies a current region picture, though

an analogous picture of course applies to the target region case. We ask questions about

partonic regions in the context of the steps needed to factorize graphical structure in a

manner consistent with particular partonic pictures. Our general view of factorization is

based on that of Collins [11, 30] and collaborators, though the same statements apply to

most other approaches.

We are interested in the kinematics of the ki + q → kf + kX subprocess and how

closely it matches the overall P + q → PB + X process under very general assumptions.

Specific realizations of the partonic subprocess, each of which can contribute to a different

kinematical region, are shown in figure 6. We will analyze the subprocess in the Breit

frame and write

kb
i =

(
Q

x̂N

√
2
,
x̂N(k2

i + k2
i,b,T)

√
2Q

,ki,b,T

)
, kb

f =

(
k2

f,b,T + k2
f√

2ẑNQ
,
ẑNQ√

2
,kf,b,T

)
. (4.1)

Hats always indicate a partonic kinematical variable, whereas ξ and ζ are momentum

fractions. We have defined the Breit frame momentum fractions and Breit frame x̂N, ẑN

analogous to xN and xBj:

k+
i ≡ ξP+

b , P−B,b ≡ ζk−f , x̂N ≡ −
q+

b

k+
i,b

=
xN

ξ
, ẑN ≡

k−f,b

q−b
=
zN

ζ
. (4.2)

We will write the transverse momentum as

kf,b,T = −ẑNqT + δk T . (4.3)
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In the hadron frame, eq. (B.2) gives

kf,H,T = δk T + Power Suppressed , (4.4)

so δk T is good for characterizing an intrinsic relative transverse momentum in the large

Q limit; in eq. (4.1) intrinsic transverse momentum is δk T when qT = 0. For nearly

on-shell partons,

|k2
i |, |k2

f | = O
(
m2
)
. (4.5)

In the limit where m� Q and xBj, zh, qT are fixed, the outgoing parton is exactly aligned

with the observed hadron so long as

δk2
T = O

(
m2
)
. (4.6)

For fixed x̂N, ẑN and q2
T, k2

X is calculable from momentum conservation,

k2
X = (ki + q − kf)

2 . (4.7)

It will also be useful to define a momentum variable

k ≡ kf − q . (4.8)

It is sometimes useful to have k in terms of k2
X instead of ẑN. For example, in the special

case that k2
i = k2

f = k2
i,b,T = δk2

T = 0

k+
b =

Q√
2

(
1 +

q2
T

Q2

(
1− x̂N(1 + k2

X/Q
2)

1− x̂N(1− q2
T/Q

2)

))
=

Q√
2

(
1 +

q2
T

Q2
+ · · ·

)
, (4.9)

k−b = − Q√
2

(
1− 1− x̂N(1 + k2

X/Q
2)

1− x̂N(1− q2
T/Q

2)

)
= − x̂NQ

(1− x̂N)
√

2

(
q2

T

Q2
+
k2

X

Q2
+ · · ·

)
, (4.10)

k T = −q T

(
1− x̂N(1 + k2

X/Q
2)

1− x̂N(1− q2
T/Q

2)

)
= −q T

(
1− x̂N

1− x̂N

(
q2

T

Q2
+
k2

X

Q2

)
+ · · ·

)
. (4.11)

On the second line, the “· · · ” represents higher powers in an expansion in small q2
T/Q

2 and

k2
X/Q

2. When q2
T/Q

2 → 0 and k2
X/Q

2 → 0, the kinematics of the struck parton approach

the kinematics of TMD factorization, or the handbag contribution in collinear factorization,

with the errors in each component proportional to q2
T/Q

2.

The most basic of partonic approximations is that the masses and off-shellness of

partons is small relative to the hard scale:

k2
i /Q

2 → 0 k2
f /Q

2 → 0 . (4.12)

On top of these, other approximations are normally needed. For instance, in the current

region kf is aligned with the final state hadron and

kf · PB → 0 . (4.13)

Beyond these, still further approximations apply to different specific partonic subprocesses:
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q

ki
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k2

q

ki

kf

k2

k3

(a) (b) (c)

Figure 6. Examples of hard kinematics. Graph (a) represents handbag kinematics. Graph (b) is

2 → 2 kinematics, which can represent, for instance, the first non-vanishing contribution when we

specialize to massless pQCD graphs at large transverse momentum. Graph (c) is 2 → 3 kinematics.

We remark that in general, in Graphs (a), (b) and (c) the dashed lines may represent groups of

particles, such as those making up a gauge link.

• First, in the 2→ 1 process of figure 6(a): in order to ensure this kinematical config-

uration, one assumes that ki → k and drops the 1/Q2-suppressed terms in equations

like eqs. (4.9)–(4.11).

• Second, for a hard 2 → 2 process shown in figure 6(b): one needs to have |k2| ∼ Q2

while k2
X/Q

2 → 0.

• Third, if both |k2| and k2
X are large, then at least three partons (e.g., figure 6(c)) are

ejected at wide angles from the hard collision.

For fixed xN, zN, Q2, and PB,T, only certain ki and kf are consistent with any given

picture in figure 6.

4.1 TMD current region

Suppose we wish to interpret a particular SIDIS region with a partonic configuration like

figure 6(a), corresponding to the current fragmentation region. For a partonic description

to hold at all, a minimum requirement is that ratios like eq. (4.12) are very small. So define

a ratio

General Hardness Ratio = R0 ≡ max

(∣∣∣∣
k2

i

Q2

∣∣∣∣ ,
∣∣∣∣
k2

f

Q2

∣∣∣∣ ,
∣∣∣∣
δk2

T

Q2

∣∣∣∣
)
. (4.14)

and consider regions of Q where R0 is less than a certain numerical size for a given set of

estimates for k2
i and k2

f . Next, since scattering is assumed to be in the current region in

figure 6(a), the ratio

Collinearity = R1 ≡
PB · kf

PB · ki
, (4.15)

must also be small. See ref. [31] for more discussion — R1 corresponds to R from that

reference. The expression for R1 in terms of rapidities is presented in eq. (E.8).

The 2 → 1 partonic kinematics only apply if k2/Q2 ≈ 0, an approximation that fails

if transverse momentum is too large. So define another ratio,

Transverse Hardness Ratio = R2 ≡
|k2|
Q2

. (4.16)
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R2 is small for 2→ 1 partonic kinematics. From eq. (4.1),

R2 =

∣∣∣∣−(1− ẑN)− ẑN
q2

T

Q2
− (1− ẑN)k2

f

Q2ẑN
− δk2

T

ẑNQ2
+

2q T · δk T

Q2

∣∣∣∣ ≈ (1−ẑN )+ẑN
q2

T

Q2
. (4.17)

Note that this suggests qT from eq. (2.21) as the most useful transverse momentum for

quantifying transverse momentum hardness relative to Q; if q2
T/Q

2 ∼ 1, then R2 ∼ 1 for

both large and small ẑN while if q2
T/Q

2 � 1 and ζ ∼ zN (as in the current fragmentation

region with TMDs) then R2 � 1 (see also discussion in ref. [32]).

If the SIDIS region corresponds to 2 → 2 hard partonic kinematics, then R2 must

be large (∼ 1). However, then the ratio k2
X/Q

2 must be small since there is only one

unobserved parton, and its invariant mass must be small relative to hard scales to qualify

as a single massless parton. (See figure 6(b).) If k2 is a massless on-shell quark or gluon,

then k2
2 = 0 and this places a strong kinematical constraint on relationship between the

momentum fractions ξ and ζ. See, for example, eq. (83) of [17]. So define one more ratio,

Spectator Virtuality Ratio = R3 ≡
|k2

X|
Q2

. (4.18)

Large R2, but small R3, corresponds to 2 → 2 parton kinematics. Large R2 and large R3

corresponds to partonic scattering with three or more final state partons, such as figure 6(c).

To see that the size of R2, eq. (4.17), reflects the importance of transverse momentum,

we repeat an argument very similar to that on page 4 of ref. [32]. Note that Feynman

graphs corresponding to the inside of the box in figure 6 contain propagator denominators

of the form
1

k2 +O (m2)
,

1

k2 +O (Q2)
, (4.19)

where the denominators with +O
(
Q2
)

arise in corrections to the virtual photon vertex or

internal propagators from the emission of wide-angle kX partons. Note also that k · q ∼
q · P = O

(
Q2
)
. Possible approximations to these denominators are representative of the

approximations needed in derivations of factorization. If |k2| ∼ Q2, the O
(
m2
)

terms

in the denominators are negligible so that the part of the graph inside the box can be

calculated in perturbative QCD using both Q2 and k2 as equally good hard scales. In this

case, and k2
X � Q2, then figure 6(b) becomes the relevant picture. However, if |k2| � Q2,

the O
(
m2
)

terms in the first of the denominators in eq. (4.19) must be kept. Then, a

|k2|/Q2 � 1 approximation in the second denominator can be used, and it is this type of

approximation that leads to TMD factorization at small transverse momentum. This is

the handbag topology in figure 6(a). Note that the k line has become the target parton.

Using eq. (4.1) and eq. (4.8) for k2 gives eq. (4.17).

4.2 Hard transverse momentum

In perturbative QCD, the lowest order (in O (αs)) contribution to large transverse momen-

tum is the partonic 2 → 2 process. Again, all partons are massless and on-shell, and the

picture is figure 6(b). Since there is only one unobserved massless parton in this region, it

correspond to k2
X = 0. To see that it is the ratio R3 in eq. (4.18) that must be small in
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this region, consider how the size of k2
X affects the denominators in eq. (4.19) at fixed x̂N ,

large qT, and Q2 by expressing |k2/Q2| in terms of k2
X instead of ẑN :

∣∣∣∣
k2

Q2

∣∣∣∣ =
1

1− x̂N + x̂Nq2
T/Q

2

[
q2

T

Q2
+ x̂N

k2
X

Q2

(
1− q2

T

Q2

)]
. (4.20)

To get a simple form, we have already assumed here that k2
i and k2

f are negligible. In

propagators, therefore, the size of k2 is independent of k2
X at large k2

T if k2
X/Q

2 � 1 and

x̂N is not too close to 1. Otherwise, if R3 in eq. (4.18) becomes large, the 2 → 3 or

greater cases are likely the more applicable partonic subprocesses. In pQCD this means

that O
(
α2
s

)
or higher calculations are needed.

Different combinations of sizes for the above ratios correspond to other regions. For ex-

ample, the target fragmentation region handles cases where R1 gets large — see section 4.3

below. All of the approximations discussed above are intertwined in potentially complicated

ways, especially when Q is not especially large and mass effects may be non-negligible. This

can make even crude, order-of-magnitude estimates of their effects nontrivial, although the

influence of model assumptions should diminish rapidly at large Q. The catalogue of ratios

represented by the R0-R3 is meant to make this more straightforward to check.

A choice concerning acceptable ranges of R0, R1, R2, and R3 translates into a choice

about the range of possible reasonable values for the components of ki and kf . In practice,

this might be more conveniently stated in reverse. That is, one starts with general expec-

tations regarding the sizes of the partonic components of ki and kf based on models and/or

theoretical considerations. The question then becomes whether the resulting R0, R1, R2,

and R3 are consistent with a particular region of partonic kinematics (hard, current region,

large transverse momentum, etc).

Our aim here is not to address any particular theoretical framework for estimating

intrinsic properties of partons, or to estimate exactly acceptable ranges for the above

ratios, but only to demonstrate how, once these choices are made, they fix the relationship

between external kinematics and the region of partonic kinematics.

4.3 Target and soft regions

If, in contrast to the discussion in section 4.1 and section 4.2, the hadron is in the target

fragmentation region (see figure 7), then

PB · P � Q2 , (4.21)

In the target region, zh is no longer as useful for parameterizing the process since it no

longer necessarily describes a momentum fraction — see eq. (2.22) and note that the

quantity under the square root diverges as zh → 0. In terms of xh, zN is:

zN =

√
4x2

Bj(M
2
B/Q

2)(1− q2
T/Q

2) + x2
h − xh

2xBj(1− q2
T/Q

2)

=
M2

BxBj

Q2xh
−
M4

Bx
3
Bj

(
Q2 − q2

T

)

Q6x3
h

+O

(
M6

B

(
Q2 − q2

T

)2

Q10

)
, (4.22)
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Figure 7. A hadron produced in the target region — see eq. (4.21). Hadrons produced from the

hard part are not observed.

where we have kept the solution that gives exactly zN = 0 when PB is exactly massless and

collinear to P . Now,

PB · P =
MMB,T

2

(
e∆y + e−∆y

)

=
M2xBj

(
M2

B + q2
Tz

2
N

)

QzN

(√
4M2x2

Bj +Q2 +Q
) +

QzN

(√
4M2x2

Bj +Q2 +Q
)

4xBj
. (4.23)

Equation (4.23) is no larger than O
(
m2
)

if zN ∼ m2/Q2 and q2
Tz

2
N/Q

2 � 1. So for the

target region, eq. (4.21) with eqs. (4.22)–(4.23) means

zN = Θ

(
m2

Q2

)
. (4.24)

The “Big Θ” symbol is used because the first term in eq. (4.23) puts a lower limit on

acceptable sizes for zN. In other words, the target region criterion fails both when zN �
m2/Q2 as well as when zN � m2/Q2. From eq. (4.22), this means the target fragmentation

criterion in terms of xh, xBj and PB,b,T is

xh

xBj
= O (1) ,

q2
Tz

2
N

Q2
=

P2
B,b,T

Q2
� 1 . (4.25)

To translate eq. (4.21) into a dimensionless ratio, define

R′1 =
PB · P
Q2

=
M2xBj

(
M2

B + q2
Tz

2
N

)

Q3zN

(√
4M2x2

Bj +Q2 +Q
) +

zN

(√
4M2x2

Bj +Q2 +Q
)

4xBjQ
. (4.26)

Therefore, the target region criterion is

R′1 � 1 . (4.27)

In [31], it was 1/R1 that was used to characterize the target region, and that is another

acceptable definition, but eq. (4.26) has the advantage of working even when ki differs

significantly from P and of being simpler to calculate.
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It is possible that for some hadrons, R2 � 1, while neither R1 nor R′1 is small. We

call this the soft region since such hadrons are not a product of hard scattering but do

not associate in any obvious way with a quark or target direction. These hadrons may be

products of fragmentation of soft quarks and gluons that fill in the central rapidity region

between the struck and the outgoing hadrons.

5 Numerical examples

In section 4 we defined the ratios R1, R2, R3 and R′1 and described how they can help

to connect different partonic pictures to specific hadronic kinematics. These quantities

can allow in principle to identify kinematical regions where a specific physical picture

should be valid, i.e. TMD region section 4.1, hard gluon radiation region section 4.2, target

fragmentation region section 4.3. In this article, we do not attempt to provide a specific

demarcation of such regions, but rather establish the (up to now missing) language to

perform such analyses. We provide a web tool to enable this type of studies [12]. We stress

that a more specific determination of the SIDIS regions requires numerical estimates of the

partonic momenta.

It is helpful to sketch the landscape of possible scenarios in a transverse momentum

versus rapidity map like the one shown in figure 8. Each of the regions discussed in section 4

is represented there as a colored blob, and the task is to determine the sizes of the blobs,

their borders, and their degree of overlap. The relevant power suppression factors are

shown. (Recall, for example, eq. (4.17).)

To give more detailed examples, a few assumptions about non-perturbative properties

of partons are necessary: 300 MeV is a typical estimate of non-perturbative mass scales, so

we try ki = kf = δkT = 300 MeV. Also, to start with we assume that q T · δk T = qTδkT.

Azimuthal effects may be added later.

In addition, the particular partonic kinematics of interest need to be specified. Say, for

example, that the goal is to examine target partons in the valence region (such as discussed

on page 3 of ref. [6]). Then the focus should be on momentum fraction values of ξ roughly

around 0.3. For ζ, we might reasonably focus on values where collinear fragmentation

functions are large but have reasonably small uncertainties, say ζ ≈ 0.3. From figure 3,

JLab 12 measurements at xBj ≈ 0.2 may reach to as large as about 2 GeV in Q. First

let’s consider the overall kinematics. The unobserved invariant mass-squared for the SIDIS

process reads

W 2
SIDIS = M2 +M2

B +
Q2(1− xBj − zh)

xBj
+

Q4zh

(√
1 +

4M2x2Bj

Q2

√
1− 4M2x2BjM

2
B,T

z2hQ
4 − 1

)

2M2x2
Bj

M,MB→0
=

Q2(1− xBj)(1− zh)

xBj
−

P2
B,T

zh
. (5.1)

Contour plots of W 2
SIDIS, eq. (5.1), are shown for a pion mass in figure 9 for (a) qT = 0 and

(b) qT = 2.0 GeV, giving a sense of what is kinematically possible for the SIDIS remnant
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Figure 8. Sketch of kinematical regions of SIDIS in terms of the produced hadron’s Breit

frame rapidity and transverse momentum. In each region, the type of suppression factors that give

factorization are shown. (The exact size and shape of each region may be very different from what

is shown and depends on quantities like Q and the hadron masses.) In the Breit frame, according

to eq. (E.7), partons in the handbag configuration are centered on y ≈ 0 if −k2i ≈ k2f = O
(
m2
)
.

The shaded regions in the sketch are shifted somewhat toward the target rapidity yP,b (the vertical

dashed line) to account for the behavior of the rapidities, eq. (E.1), when zN and xN are small.

at different qT and for lower Q. The expectation is that the area near the kinematically

forbidden region, where the final state phase space vanishes, does not readily separate into

distinct regions as in figure 8. So in the below we will focus on kinematics away from those

boundaries. Also, for now we will restrict to large enough Q so that R0 in eq. (4.14) is

negligible, so R1 is the first of the R0-R3 that we will consider here.

For the representative values discussed above (ξ = 0.3, zh = 0.25, ζ = 0.3 and a small

qT = 0.3 GeV), values of R1 are shown on the Q vs. xBj contour plot in figure 10. The

trend is as expected: at large Q and not-too-large xBj, R1 remains small for all transverse

momenta, while corrections might be necessary at smaller Q and larger xBj. In addition

to confirming the current-region approximation, which holds valid where collinearity R1 is

small, it is necessary to map out the applicability of large and small transverse momentum

approximations. For this we turn to R2. figure 11 is an example that corresponds to the

same kinematics as figure 10. It confirms basic expectations, such as that what constitutes

“large-qT” grows with Q. It also shows that, while the hadron is in the current region for

most qT as in figure 10 (a,b), the small transverse momentum region shown in figure 11 (a)

is much more restrictive. For qT . 0.5 GeV, R2 is firmly in the small transverse momentum
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Figure 9. Plots (a)–(b) show W 2
SIDIS, eq. (5.1), for qT = 0 and qT = 2.0 GeV respectively for the

case of a produced pion. Here zh = 0.25 in each case. The red region is kinematically forbidden.

Near to the kinematically forbidden region, it is to be expected that a clear separation into regions

along the lines of figure 8 will break down. The classification according to the sizes of R0-R3 is

cleaner at larger Q and with small but fixed xBj. Note that the corresponding plots for a heavier

final state hadron have a larger forbidden region.
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Figure 10. Collinearity (R1 from eq. (4.15) for fixed zh = 0.25, ζ = 0.3 and ξ = 0.2. Top

panels show the ratio for MB = mπ at (a) small transverse momentum (qT = 0.3 GeV) and (b)

qT = 2.0 GeV. Similar cases for MB = mK are shown in the bottom panels, (c) and (d).
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Figure 11. Transverse momentum hardness, R2, from eq. (4.16) for fixed zh = 0.25, ζ = 0.3 and

ξ = 0.2. Top panels show the ratio for MB = mπ at (a) xBj = 0.2 and (b) xBj = 0.01. Similar cases

for MB = mK are shown in the bottom panels, (c) and (d).

region (small values of R2) for most of the Q shown, while for qT & 1.5 GeV R2 indicates

that we are well in the large transverse momentum region.

There is a broad intermediate region where the situation is not clear. The flavor of

the final state hadron is a decisive factor in determining the relevant factorization region.

For example, comparing the plots of R1 in figure 10 for (a) MB = mπ, and (c) MB = mK ,

shows a completely different behaviour of the collinearity ratio R1. For Q = 1.5 GeV and

xBj = 0.1, R1 ≈ 0.1 for pions and R1 ≈ 0.8 for kaons. If R1 ≈ 0.8 is taken to be large,

then confidence that one is in the current region deteriorates.

The flavor of the final state hadron has little effect on the transverse momentum

hardness, R2, from eq. (4.16). From figure 11 (a) and figure 11 (c) flavor dependence is

only noticeable at low Q and even then the effect is small. To summarize, the produced

hadron mass affects collinearity R1 significantly, but does not appear to be a primary factor

in determining transverse hardness R2.

Within a specific example, collinearity R1 and transverse hardness R2 have helped us

to map out the current kinematic region (small R1) and to separate the “small” from the

“large” transverse momentum regions (small R2 vs large R2). The small R2 will reasonably
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R0 R1 R2 R3 R′1

TMD Current region small small small X large

Hard region small small large small (low order pQCD) large

small small large large (high order pQCD) large

Target region small large X X small

Soft region small large small X large

Table 1. Examples for sizes of ratios corresponding to particular regions of SIDIS. The “X” means

“irrelevant or ill-defined.” This ranking should be viewed as schematic since “small” and “large”

need to be defined quantitatively and can in general be scale-dependent.

correspond to a region where we expect TMD factorization to apply, while for the large R2

a collinear factorization will be appropriate.

We present a catalogue of typical sizes for ratios corresponding to regions in SIDIS in

table 1.

At this stage, one might wonder whether a LO calculation could be enough or whether

higher order perturbative corrections are necessary. This is where R3 comes into the game:

large R3 coupled with large R2 signal a large qT region where presumably higher order

pQCD corrections are relevant, while small R3 together with small R2 indicate a TMD

current region, which requires a TMD factorization scheme.

The behavior of R3 is shown in figure 12 as a function of xBj and Q. Note that at large

transverse momentum there is a linear region in the Q versus xBj plane where the 2 → 2

process is the optimal description (R3 is small) and thus low order QCD computations may

be applicable.

Clearly the above examples only apply to the specific case we have chosen, correspond-

ing to specific values of the kinematic variables (ξ = 0.3, zh = 0.25, ζ = 0.3, qT = 0.3 GeV)

and of the non perturbative parameters (ki = kf = δkT = 300 MeV, q T · δk T = qTδkT).

A web tool which allows to compute R1-R3 for any kinematic configuration can be found

in ref. [12].

The ratios defined in this paper allow model assumptions about quantities like, for

example, partonic virtualities to be translated into expectations for the applicability of

different factorization-based pictures. There are, of course, many possible ways this might

be useful in practice.

The most natural application would be to use the R ratios as criteria to help in the

selection of the experimental data samples to use in phenomenological studies of SIDIS

processes. These studies inevitably rely on models which are only suitable for specific kine-

matical ranges. It is therefore crucial to have tools, like the R ratios, to relate assumptions

about the partonic degrees of freedom to the classification of the SIDIS kinematic regions.

Clearly these types of analyses will depend also on the precision of the existing data

to constrain the non-perturbative parameters, but the R ratios can be used to update

them as the quantity of data increases. We leave the dedicated study of incorporating the

phenomenology of the SIDIS process for future work.
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Figure 12. Spectator virtuality ratio, R3, from eq. (4.18) for fixed zh = 0.25, ζ = 0.3 and ξ = 0.2.

Top panels show the ratio for MB = mπ at (a) small transverse momentum (qT = 0.3 GeV) and

(b) qT = 2.0 GeV. Similar cases for MB = mK are shown in the bottom panels, (c) and (d). Note

that both xBj and Q axes are shown in logarithmic scale.

6 Conclusions

Since early work in, for example, refs. [8, 15, 17] there has been a large number of studies

on unpolarized SIDIS cross sections [33–39]. Unpolarized SIDIS is, however, only one

component in a broad program of phenomenological studies where the universality of parton

correlation functions plays a central role in testing pictures of nucleon structure [40–60].

Integrating SIDIS into such a program demands a clear language for identifying kinematical

regions with particular underlying partonic pictures, especially in regions of moderate to

low Q where sensitivity to kinematical effects outside the usual very high energy limit

becomes non-trivial.

In this paper, we have outlined the ways that the questions about the boundaries

between different partonic regimes of SIDIS can be posed systematically, based on the

power-law expansions that apply in each region (see figure 8). As the ratios R0-R3 described

in section 4 show, quantifying the separation between different SIDIS regions requires at

least some rough model assumptions for the intrinsic properties of partons. Hence, our

position is that region mapping should be viewed as one of the aspects of SIDIS that is to
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be determined with guidance from data, rather than being treated as well-known input.

Nevertheless, the R0-R3 can already be useful for querying the reasonableness of some

region assumptions.

For example, if collinearity R1 is found to be approximately 10 for a wide range of

even rough models, then a current region assumption could be viewed with skepticism.

Conversely, very small values of collinearity R1 might be considered a strong signal that

one is deep in a regime where a current region fragmentation function picture is appropriate.

If, in addition, there is a small transverse hardness ratio R2 it may be taken to signal the

close proximity to small transverse momentum, where a TMD factorization scheme would

be appropriate. If transverse hardness ratio R2 and spectator virtuality ratio R3 are both

large, then high order pQCD corrections are likely important. In a fitting context, the R0-

R3 can be utilized to fix Bayesian priors. Conversely, the success or failure of theoretical

predictions can be used to constrain the ranges of R0-R3 that are acceptable for particular

regions in future theoretical predictions.

In developing a picture of the likelihood that a particular kinematical region corre-

sponds to a particular partonic picture, one should of course consider a wide range of

multiple non-perturbative models for the values of ki, kf , etc., in addition to sampling from

a range of ζ, ξ, and azimuthal angles, and track the values of R0-R3, in addition to xN/xBj,

zN/zh, W 2
tot, W

2
SIDIS to assess the validity of various purely kinematical approximations.

The effect of changing quantities like k2
i and k2

f can be examined directly with our web

tool ref. [12].

In the future we plan to incorporate this view into phenomenological procedures, par-

ticularly in situations with not-too-large Q. We hope that this will ultimately contribute to

a clearer picture of the borders between different regions and an improved understanding

of the transition between hadronic and partonic degrees of freedom.
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A Light-cone variables

Light-cone variables are defined as follows: for a four-vector V µ,

V µ =
(
V +, V −,V T

)
, (A.1)

where

V + =
V 0 + V z

√
2

, V − =
V 0 − V z

√
2

, V T = (V x, V y) . (A.2)

For a four-momentum V , rapidity is defined as usual:

y =
1

2
ln

(∣∣∣∣
V +

V −

∣∣∣∣
)
. (A.3)

In terms of rapidity, light-cone momentum is:

V =

(
MT√

2
ey,

MT√
2
e−y,V T

)
, (A.4)

where V 2 = M2 and transverse mass is

MT =
√∣∣M2 + V2

T

∣∣ . (A.5)

For a virtual momentum, M2 < 0 and either the plus or minus light-cone component is

negative, e.g.,

V =

(
MT√

2
ey,−MT√

2
e−y,V T

)
. (A.6)

In labeling a four-momentum component of V , we will write:

V a
b,c , (A.7)

where a is the contravariant component, c specifies the reference frame, and b is any

other necessary subscript depending on the given context. A two-dimensional transverse

momentum is

Vb,c,T . (A.8)

The frame subscripts b, c on a four-momentum indicate in which frame its components will

be expressed.

B Lorentz transformations

It is often useful to switch back and forth between the photon (e.g., Breit) and hadron

frames. For this, define

κ ≡

√√√√√z2
Nq

2
T +

M2x2
N

(
M2

B + q2
Tz

2
N −

Q4z2N
M2x2N

)2

4Q4z2
N

= O

(
Q2

m

)
. (B.1)
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The law to transform a vector V from the Breit frame to the hadron frame is then7

V +
H =

1

2M2x2
N

(
M2x2

N

(
1 +

√
1− z2

Nq
2
T

κ2

)
V +

b −Q2

(
−1 +

√
1− z2

Nq
2
T

κ2

)
V −b

)

+
QzN√

2MxNκ
qT ·Vb,T , (B.2)

V −H = − 1

2Q2

(
M2x2

N

(
−1 +

√
1− z2

Nq
2
T

κ2

)
V +

b −Q2

(
1 +

√
1− z2

Nq
2
T

κ2

)
V −b

)

−MxNzN√
2Qκ

qT ·Vb,T , (B.3)

VH,T = Vb,T

√
1− z2

Nq
2
T

κ2
+ qT

zN

(
Q2V −b −M2x2

NV
+

b

)
√

2MQxNκ
. (B.4)

Varying conventions. For us, the hadron frame has zero transverse momentum for

the produced hadron and non-zero transverse momentum for the virtual photon [11, 16].

Note that this is opposite the situation in the hadron frame of Meng-Olness-Soper (MOS)

ref. [13]. The MOS hadron frame corresponds to the photon frame of Collins [11]. MOS

define a Lorentz invariant four-vector ([13, eq. (10)]) that measures the deviation from the

back-to-back configuration. From [13, eq. (11)] and [11, eq. (13.104)], the ref. [11] hadron

frame q2
H,T is the same as the MOS q2

H,T if hadron masses are neglected.

Restricting to the MOS hadron frame, MOS use [13, eq. (11)] and [13, eq. (13)] and

P 2
B = 0 to find [13, eq. (12)], which in light-cone coordinates is eq. (2.19) with M2

B = 0 and

with the MOS q T defined to point along the positive x-axis. In the MOS hadron frame,

the transverse part of PB is always in the x direction and is always positive.

Mulders and Tangerman [16, eqs. (15)–(17)] give general expressions for four vector

components that include the effects of hadron masses, and the reference frames used corre-

spond to the hadron and/or photon frames defined above. References such as [20, 24, 61]

specialize the photon frame to the target rest frame rather than the Breit frame. PB,b,T

is invariant, however, with respect to boosts along the z-axis. Other conventions use some

combination of the above. Refs. [62–64] use a hadronic tensor with an extra 1/4zh relative

to the above and refs. [16, 18] have an extra 1/2M . The notation of ref. [33] is similar to

ref. [13].

C Cross sections and structure functions

Here we establish our conventions for the SIDIS and DIS cross sections. A cross section

differential in N final state particles for particle A scattering from particle B is related to

7The simplest sequence of transformations to get this are: 1) boost from the Breit frame to the proton

rest frame 2) rotate until the momentum of the final state hadron is along the negative z-axis 3) boost

along the z-axis to a frame where the proton has a light-cone plus component equal to that of Breit frame

P+
b = Q/xN

√
2.
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modulus-squared matrix elements |M |2 in the usual way:

dσ =
|MA,B→N |2

2λ(s,m2
A,m

2
B)1/2

× d3p1

(2π)32E1
× d3p2

(2π)32E2
× · · · × d3pN

(2π)32EN

× (2π)4δ(4)

(
kA + kB −

N∑

i=1

pi

)
, (C.1)

with the triangle function

λ(s,m2
A,m

2
B) ≡ s2 +m4

A +m4
B − 2sm2

A − 2sm2
B − 2m2

Am
2
B .

The usual structure function decompositions on Wµν
tot and Wµν

SIDIS are

Wµν
tot =

(
−gµν +

qµqν

q2

)
F tot

1 (xBj, Q
2) +

(
Pµ − qµ P ·q

q2

)(
P ν − qν P ·q

q2

)

P · q F tot
2 (xBj, Q

2)

+ Pol. Dep. , (C.2)

Wµν
SIDIS =

(
−gµν +

qµqν

q2

)
F1(xBj, Q

2, zh,PB,b,T)

+

(
Pµ − qµ P ·q

q2

)(
P ν − qν P ·q

q2

)

P · q F2(xBj, Q
2, zh,PB,b,T) + Pol. Dep. . (C.3)

“Pol. Dep.” is a place holder for polarization and azimuthal angle dependent terms, which

we leave unspecified for now. The structure functions’ explicit dependence on M and MB

has been dropped for brevity. While xBj and zh are shown as the independent variables

for the structure functions, it is useful to view them as being themselves functions of xN,

zN, M and MB. We have not done this here in order to avoid over-complicating notations,

but it is useful for making kinematical approximations clear, as discussed in [23]. The

differential SIDIS cross section in the Breit frame (or any photon frame) is then

dσ

dxBj dy dψ dzN d2PB,b,T

=
α2

emy

4Q4zN
LµνW

µν
SIDIS

=
α2

em

2xBjyzNQ2

[(
1− y −

x2
Bjy

2M2

Q2

)
F2 + y2xBjF1 + Pol. Dep.

]

=
α2

em

4xBjzNyQ2

[(
1 + (1− y)2 +

2x2
Bjy

2M2

Q2

)
F2 − y2FL + Pol. Dep.

]

=
α2

emy

4xBjzNQ2(1− ε)
[
FT + εFL + Pol. Dep.

]
. (C.4)

In the last two lines

FT ≡ 2xBjF1 , (C.5)

FL ≡
(

1 +
4M2x2

Bj

Q2

)
F2 − 2xBjF1 =

(
1 +

4M2x2
Bj

Q2

)
F2 − FT , (C.6)
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which are definitions generalized from the inclusive case to SIDIS. To match with other

common notational conventions, we have used

γ ≡ 2MxBj

Q
, ε ≡ 1− y − γ2y2

4

1− y + y2

2 + γ2y2

4

, (C.7)

along with the identities (see [20, eqs. (2.8)–(2.13)]),

1− y + y2

2 + y2γ2

4

1 + γ2
=

y2

2(1− ε) ,
1− y − y2γ2

4

1 + γ2
=

y2ε

2(1− ε) . (C.8)

A convenient recipe for calculating structure functions is to contract with Lorentz

covariant extraction tensors, PµνΓ , defined as

Pµνg = gµν , PµνPP = PµP ν . (C.9)

Then

F1(xBj, Q
2, zh,PB,b,T) = Pµν1 Wµν ,SIDIS F2(xBj, Q

2, zh,PB,b,T) = Pµν2 Wµν ,SIDIS ,

(C.10)

where

Pµν1 ≡ −
1

2
Pµνg +

2Q2x2
N

(M2x2
N +Q2)2

PµνPP = −1

2
Pµνg +

2x2
Bj

Q2
PµνPP +O

(
m2

Q2

)
, (C.11)

Pµν2 ≡
12Q4x3

N

(
Q2 −M2x2

N

)
(
Q2 +M2x2

N

)4

(
PµνPP −

(
M2x2

N +Q2
)2

12Q2x2
N

Pµνg

)

=
12x3

Bj

Q2
PµνPP − xBjP

µν
g +O

(
m2

Q2

)
. (C.12)

The unobserved invariant mass-squared in inclusive DIS is

W 2
tot = M2 +

Q2(1− xBj)

xBj
. (C.13)

In SIDIS it is

W 2
SIDIS = M2 +M2

B +
Q2(1− xBj − zh)

xBj
+

Q4zh

(√
1 +

4M2x2Bj

Q2

√
1− 4M2x2BjM

2
B,T

z2hQ
4 − 1

)

2M2x2
Bj

M,MB→0
=

Q2(1− xBj)(1− zh)

xBj
−

P2
B,T

zh
. (C.14)

Note that if both zh and xBj are close to 1, then |PB,T| cannot be much greater than zero

without hitting the resonance region of W 2
SIDIS ≈ 0.
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D Sum rule

In the appendix, we will work in the target hadron rest frame (a photon frame). Start with

the elementary relation

∑

B

∫
d2PB,γ,T dzN

(
dσB

dxBj dy dψ d2PB,γ,T dzN

)
= 〈N〉 dσtot

dxBj dy dψ
, (D.1)

where 〈N〉 is the average multiplicity. Change the zN variable on the left side to zh. The

dzh appears in both the integral and the derivative and Jacobian factors cancel:

∑

B

∫
d2PB,γ,T dzh

(
dσB

dxBj dy dψ d2PB,γ,T dzh

)
= 〈N〉 dσtot

dxBj dy dψ
. (D.2)

Expressed in differential form, and for one particular hadron type B, this is

d2PB,γ,T dzh

(
dσB

dxBj dy dψ d2PB,γ,T dzh

)
= d〈NB〉

dσtot

dxBj dy dψ
, (D.3)

where d〈NB〉 is the number of particles of type B in the differential volume d2PB,γ,T dzh .

Let EB be the energy per particle of type B (in the target rest frame), and multiply both

sides of eq. (D.3) by EB:

EB d2PB,γ,T dzh

(
dσB

dxBj dy dψ d2PB,γ,T dzh

)
= EB d〈NB〉

dσtot

dxBj dy dψ

= d〈Eall
B 〉

dσtot

dxBj dy dψ
. (D.4)

EB d〈NB〉 is the energy per B-particle times the number of B particle in the differential

volume, so it is the total energy of all B-particles in the differential volume. Therefore, we

have defined it as d〈Eall
B 〉 in the last equality. Integrating it and summing over all types of

final state particles produces the total energy of the entire final state:

∑

B

∫
d〈Eall

B 〉 = Etot . (D.5)

Note that the sum over B is a sum over all types of particles, not a sum over actual particles.

Divide both sides of eq. (D.4) by q0:

EB
q0

d2PB,γ,T dzh

(
dσB

dxBj dy dψ d2PB,γ,T dzh

)
=

1

q0
d〈Eall

B 〉
dσtot

dxBj dy dψ
. (D.6)

Integrate over both sides, restore the sum over particle types B, and use eq. (D.5) for the

right side:

∑

B

∫
EB
q0

d2PB,γ,T dzh

(
dσB

dxBj dy dψ d2PB,γ,T dzh

)
=
Etot

q0

dσtot

dxBj dy dψ
. (D.7)
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Now, in the target rest frame,

zh =
P · PB

P · q =
EB
q0

. (D.8)

Also,

q0 =
Q2

2MxBj
, P 0 = M . (D.9)

From energy conservation,

Etot = q0 + P 0 , (D.10)

so
Etot

q0
=
q0 + P 0

q0
= 1 + 2xBjM

2/Q2 =

(
1 +

γ2

2xBj

)
. (D.11)

So, eq. (D.7) becomes

∑

B

∫
zh d2PB,γ,T dzh

(
dσB

dxBj dy dψ d2PB,γ,T dzh

)
=

(
1 +

γ2

2xBj

)
dσtot

dxBj dy dψ
.

(D.12)

Now we need to use this to relate the SIDIS and the total DIS structure functions. For

the total DIS cross section, the structure function decomposition with standard notational

conventions uses eq. (2.30), eq. (2.32), and eq. (C.2). The cross section is thus

dσtot

dxBj dy dψ
=

α2
emy

xBjQ2(1− ε)
[
F tot
T + εF tot

L

]
. (D.13)

Substituting eq. (D.13) into the right side of eq. (D.12), and substituting eq. (2.37)

into the left side gives

∫
dzh d2PB,b,T zh

1

4zN

xN

(√
1− 4M2x2BjM

2
B,T

Q4z2h
+ 1

)

2xBj

√
1− 4M2x2BjM

2
B,T

Q4z2h

FT/L =

(
1 +

γ2

2xBj

)
F tot
T/L . (D.14)

Substituting eq. (2.24) for zN gives the factor in eq. (2.37). Thus, the normalization of FT/L
needs to be redefined as in eq. (2.38) in order to get the integration/sum rule in eq. (2.40)

and [20, eqs. (2.18)–(2.21)].

E Rapidity

It is often useful to express results in terms of rapidity instead of zN or zh. In the

Breit frame,

yP,b ≡ ln

(
Q

xNM

)
, yB,b ≡ ln

(
MB,T

zNQ

)
. (E.1)

The boost invariant rapidity difference is

∆y ≡ yP,b − yB,b = ln

(
zNQ

2

xNMMB,T

)
. (E.2)
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If xN ≈ zN and MB,T ≈ M , then the produced hadron rapidity is approximately the

negative of the proton rapidity. For fixed zN/xN, fixed MB,T and large Q

e∆y = O

(
Q2

m2

)
, e−∆y = O

(
m2

Q2

)
. (E.3)

zh in terms of yB,b is [31]

zh =
xNMB,TM

Q2 − x2
NM

2

(
e∆y + e−∆y

)
≈ xBjMB,TM

Q2
e∆y . (E.4)

In terms of zh, the rapidity of the hadron in the Breit frame is double valued:

y±B,b = ln


Qzh

(
Q2 − x2

NM
2
p

)

2x2
NM

2MB,T
± Q

xNM

√√√√z2
h

(
Q2 − x2

NM
2
)2

4x2
NM

2M2
B,T

− 1


 ≈ ln

(
MB,T

zhQ

)
. (E.5)

The “+” solution corresponds to a hadron with large rapidity in the direction of P , while

the “−” solution corresponds to a rapidity in the opposite direction, and thus is more

consistent with current region factorization. The approximation after the “≈” corresponds

to the m2/Q2 → 0 limit of the “−” solution.

Expressing the plus and minus components in eq. (4.1) in terms of rapidity,

yb
i =

1

2
ln

(∣∣∣∣∣
Q2

x̂2
N(k2

i + k2
i,T)

∣∣∣∣∣

)
, yb

f =
1

2
ln

(∣∣∣∣
ẑ2

Nq
2
T + δk2

T − 2ẑNq T · δk T + k2
f

ẑ2
NQ

2

∣∣∣∣
)
.

(E.6)

Then, values of ẑN, x̂N, ki, kf , ki,T, kf,T can be mapped, along with values of R0-R3, to

regions of a qT versus rapidity map like figure 8. If ẑNqT = O (Q), then yb
f ≈ ln

(
qT
Q

)
≈ 0,

while if ẑNqT = O (m), then yb
f ≈ ln

(
m
Q

)
. In the handbag configuration, wherein all

partonic transverse momenta are zero, the parton four-momenta may be written,

ki =




√
−k2

i√
2

ey
b
i ,−

√
−k2

i√
2

e−y
b
i ,0 T


 , kf =




√
k2

f√
2
ey

b
f ,

√
k2

f√
2
e−y

b
f ,0 T


 . (E.7)

Since k+
i ≈ −q+

b = Q/
√

2 and k+
f ≈ q−b = Q/

√
2 in the handbag configuration, then

yb
i ≈ −yb

f = O (ln (Q/m)). Therefore, partons in the handbag configuration are centered

roughly on y ≈ 0 in the Breit frame.

Note also that if xN and zN are small, then according to eq. (E.1) both the target

and produced hadrons will tend to be skewed toward larger rapidities in the Breit frame.

Therefore, hadrons measured in the final state will tend to be at larger rapidities than the

corresponding handbag-configuration partons.

Finally we write down the formula for R1 [31] in eq. (4.15), in terms of rapidity,

R1 =
MB,TMf,b,T

(
eyB,b− ybf + ey

b
f − yB,b

)
− 2zNẑNq

2
T + 2zNq T · δk T

MB,TMi,b,T

(
ey

b
i − yB,b − eyB,b− ybi

)
+ 2zNq T · ki,T

, (E.8)

where Mi,b,T =
√
|k2

i + k2
i,T| and Mf,b,T =

√
k2

f + k2
f,T .
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