162 research outputs found
LAP3, a novel plant protein required for pollen development, is essential for proper exine formation
We isolated lap3-1 and lap3-2 mutants in ascreen for pollen that displays abnormal stigma binding.Unlike wild-type pollen, lap3-1 and lap3-2 pollen exine isthinner, weaker, and is missing some connections betweentheir roof-like tectum structures. We describe the mappingand identification of LAP3 as a novel gene that contains arepetitive motif found in b-propeller enzymes. Insertionmutations in LAP3 lead to male sterility. To investigatepossible roles for LAP3 in pollen development, we assayedthe metabolite profile of anther tissues containing developingpollen grains and found that the lap3-2 defect leadsto a broad range of metabolic changes. The largest changeswere seen in levels of a straight-chain hydrocarbon nonacosaneand in naringenin chalcone, an obligate compoundin the flavonoid biosynthesis pathway
INP1 involvement in pollen aperture formation is evolutionarily conserved and may require species-specific partners
Pollen wall exine is usually deposited non-uniformly on the pollen surface, with areas of low exine deposition
corresponding to pollen apertures. Little is known about how apertures form, with the novel Arabidopsis INP1
(INAPERTURATE POLLEN1) protein currently being the only identified aperture factor. In developing pollen, INP1
localizes to three plasma membrane domains and underlies formation of three apertures. Although INP1 homologs
are found across angiosperms, they lack strong sequence conservation. Thus, it has been unclear whether they also
act as aperture factors and whether their sequence divergence contributes to interspecies differences in aperture
patterns. To explore the functional conservation of INP1 homologs, we used mutant analysis in maize and tested
whether homologs from several other species could function in Arabidopsis. Our data suggest that the INP1 involvement
in aperture formation is evolutionarily conserved, despite the significant divergence of INP1 sequences and
aperture patterns, but that additional species-specific factors are likely to be required to guide INP1 and to provide
information for aperture patterning. To determine the regions in INP1 necessary for its localization and function, we
used fragment fusions, domain swaps, and interspecific protein chimeras. We demonstrate that the central portion of
the protein is particularly important for mediating the species-specific functionality.Funding was provided to AAD by the US National Science Foundation
(MCB-1517511) and to VNSS by the Spanish Ministry of Economy and
Competitiveness (CGL2015-70290-P). PL was supported by the China
Scholarship Council. SB-MS was supported by the University of Granada,
Spain (grant Cei BioTic). We thank the Arabidopsis Biological Resource
Center (OSU) and the Maize Genetics Cooperation Stock Center (USDA/
ARS) for seed stocks, Priscila Rodriguez Garcia (OSU) for help with characterizing
Arabidopsisβtomato INP1 chimeras, and Jay Hollick (OSU) for
advice on all things maize
LAP3, a novel plant protein required for pollen development, is essential for proper exine formation
We isolated lap3-1 and lap3-2 mutants in ascreen for pollen that displays abnormal stigma binding.Unlike wild-type pollen, lap3-1 and lap3-2 pollen exine isthinner, weaker, and is missing some connections betweentheir roof-like tectum structures. We describe the mappingand identification of LAP3 as a novel gene that contains arepetitive motif found in b-propeller enzymes. Insertionmutations in LAP3 lead to male sterility. To investigatepossible roles for LAP3 in pollen development, we assayedthe metabolite profile of anther tissues containing developingpollen grains and found that the lap3-2 defect leadsto a broad range of metabolic changes. The largest changeswere seen in levels of a straight-chain hydrocarbon nonacosaneand in naringenin chalcone, an obligate compoundin the flavonoid biosynthesis pathway
Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components
In many insect species, odorant-binding proteins (OBPs) are thought to be responsible for the transport of pheromones and other semiochemicals across the sensillum lymph to the olfactory receptors (ORs) within the antennal sensilla. In the silkworm Bombyx mori, the OBPs are subdivided into three main subfamilies; pheromone-binding proteins (PBPs), general odorant-binding proteins (GOBPs) and antennal-binding proteins (ABPs). We used the MotifSearch algorithm to search for genes encoding putative OBPs in B. mori and found 13, many fewer than are found in the genomes of fruit flies and mosquitoes. The 13 genes include seven new ABP-like OBPs as well as the previously identified PBPs (three), GOBPs (two) and ABPx. Quantitative examination of transcript levels showed that BmorPBP1, BmorGOBP1, BmorGOBP2 and BmorABPx are expressed at very high levels in the antennae and so could be involved in olfaction. A new two-phase binding assay, along with other established assays, showed that BmorPBP1, BmorPBP2, BmorGOBP2 and BmorABPx all bind to the B. mori sex pheromone component (10E,12Z)-hexadecadien-1-ol (bombykol). BmorPBP1, BmorPBP2 and BmorABPx also bind the pheromone component (10E,12Z)-hexadecadienal (bombykal) equally well, whereas BmorGOBP2 can discriminate between bombykol and bombykal. X-ray structures show that when bombykol is bound to BmorGOBP2 it adopts a different conformation from that found when it binds to BmorPBP1. Binding to BmorGOBP2 involves hydrogen bonding to Arg110 rather than to Ser56 as found for BmorPBP1
Gelechiidae Moths Are Capable of Chemically Dissolving the Pollen of Their Host Plants: First Documented Sporopollenin Breakdown by an Animal
Background: Many insects feed on pollen surface lipids and contents accessible through the germination pores. Pollen walls, however, are not broken down because they consist of sporopollenin and are highly resistant to physical and enzymatic damage. Here we report that certain Microlepidoptera chemically dissolve pollen grains with exudates from their mouthparts. Methodology/Principal Findings: Field observations and experiments in tropical China revealed that two species of Deltophora (Gelechioidea) are the exclusive pollinators of two species of Phyllanthus (Phyllanthaceae) on which their larvae develop and from which the adults take pollen and nectar. DNA sequences placed the moths and plants phylogenetically and confirmed that larvae were those of the pollinating moths; molecular clock dating suggests that the moth clade is younger than the plant clade. Captive moths with pollen on their mouthparts after 2-3 days of starvation no longer carried intact grains, and SEM photographs showed exine fragments on their proboscises. GC-MS revealed cis-b-ocimene as the dominant volatile in leaves and flowers, but GC-MS analyses of proboscis extracts failed to reveal an obvious sporopollenindissolving compound. A candidate is ethanolamine, which occurs in insect hemolymphs and is used to dissolve sporopollenin by palynologists. Conclusions/Significance: This is the first report of any insect and indeed any animal chemically dissolving pollen
Predicting olfactory receptor neuron responses from odorant structure
Background Olfactory receptors work at the interface between the chemical world of volatile molecules and the perception of scent in the brain. Their main purpose is to translate chemical space into information that can be processed by neural circuits. Assuming that these receptors have evolved to cope with this task, the analysis of their coding strategy promises to yield valuable insight in how to encode chemical information in an efficient way. Results We mimicked olfactory coding by modeling responses of primary olfactory neurons to small molecules using a large set of physicochemical molecular descriptors and artificial neural networks. We then tested these models by recording in vivo receptor neuron responses to a new set of odorants and successfully predicted the responses of five out of seven receptor neurons. Correlation coefficients ranged from 0.66 to 0.85, demonstrating the applicability of our approach for the analysis of olfactory receptor activation data. The molecular descriptors that are best-suited for response prediction vary for different receptor neurons, implying that each receptor neuron detects a different aspect of chemical space. Finally, we demonstrate that receptor responses themselves can be used as descriptors in a predictive model of neuron activation. Conclusions The chemical meaning of molecular descriptors helps understand structure-response relationships for olfactory receptors and their 'receptive fields'. Moreover, it is possible to predict receptor neuron activation from chemical structure using machine-learning techniques, although this is still complicated by a lack of training data
Generic Insect Repellent Detector from the Fruit Fly Drosophila melanogaster
Background: Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests. Methodology: Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have ββgeneric repellent detector(s),β β which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the ββempty neuronβ β and showed to be sensitive to the three insect repellents. Conclusions: For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have als
Mining phenotypes for gene function prediction
<p>Abstract</p> <p>Background</p> <p>Health and disease of organisms are reflected in their phenotypes. Often, a genetic component to a disease is discovered only after clearly defining its phenotype. In the past years, many technologies to systematically generate phenotypes in a high-throughput manner, such as RNA interference or gene knock-out, have been developed and used to decipher functions for genes. However, there have been relatively few efforts to make use of phenotype data beyond the single genotype-phenotype relationships.</p> <p>Results</p> <p>We present results on a study where we use a large set of phenotype data β in textual form β to predict gene annotation. To this end, we use text clustering to group genes based on their phenotype descriptions. We show that these clusters correlate well with several indicators for biological coherence in gene groups, such as functional annotations from the Gene Ontology (GO) and protein-protein interactions. We exploit these clusters for predicting gene function by carrying over annotations from well-annotated genes to other, less-characterized genes in the same cluster. For a subset of groups selected by applying objective criteria, we can predict GO-term annotations from the biological process sub-ontology with up to 72.6% precision and 16.7% recall, as evaluated by cross-validation. We manually verified some of these clusters and found them to exhibit high biological coherence, e.g. a group containing all available antennal Drosophila odorant receptors despite inconsistent GO-annotations.</p> <p>Conclusion</p> <p>The intrinsic nature of phenotypes to visibly reflect genetic activity underlines their usefulness in inferring new gene functions. Thus, systematically analyzing these data on a large scale offers many possibilities for inferring functional annotation of genes. We show that text clustering can play an important role in this process.</p
Expression and Membrane Topology of Anopheles gambiae Odorant Receptors in Lepidopteran Insect Cells
A lepidopteran insect cell-based expression system has been employed to express three Anopheles gambiae odorant receptors (ORs), OR1 and OR2, which respond to components of human sweat, and OR7, the ortholog of Drosophila's OR83b, the heteromerization partner of all functional ORs in that system. With the aid of epitope tagging and specific antibodies, efficient expression of all ORs was demonstrated and intrinsic properties of the proteins were revealed. Moreover, analysis of the orientation of OR1 and OR2 on the cellular plasma membrane through the use of a novel βtopology screenβ assay and FACS analysis demonstrates that, as was recently reported for the ORs in Drosophila melanogaster, mosquito ORs also have a topology different than their mammalian counterparts with their N-terminal ends located in the cytoplasm and their C-terminal ends facing outside the cell. These results set the stage for the production of mosquito ORs in quantities that should permit their detailed biochemical and structural characterization and the exploration of their functional properties
A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori
In insects and other animals, intraspecific communication between individuals of the opposite sex is mediated in part by chemical signals called sex pheromones. In most moth species, male moths rely heavily on species-specific sex pheromones emitted by female moths to identify and orient towards an appropriate mating partner among a large number of sympatric insect species. The silkmoth, Bombyx mori, utilizes the simplest possible pheromone system, in which a single pheromone component, (E, Z)-10,12-hexadecadienol (bombykol), is sufficient to elicit full sexual behavior. We have previously shown that the sex pheromone receptor BmOR1 mediates specific detection of bombykol in the antennae of male silkmoths. However, it is unclear whether the sex pheromone receptor is the minimally sufficient determination factor that triggers initiation of orientation behavior towards a potential mate. Using transgenic silkmoths expressing the sex pheromone receptor PxOR1 of the diamondback moth Plutella xylostella in BmOR1-expressing neurons, we show that the selectivity of the sex pheromone receptor determines the chemical response specificity of sexual behavior in the silkmoth. Bombykol receptor neurons expressing PxOR1 responded to its specific ligand, (Z)-11-hexadecenal (Z11-16:Ald), in a dose-dependent manner. Male moths expressing PxOR1 exhibited typical pheromone orientation behavior and copulation attempts in response to Z11-16:Ald and to females of P. xylostella. Transformation of the bombykol receptor neurons had no effect on their projections in the antennal lobe. These results indicate that activation of bombykol receptor neurons alone is sufficient to trigger full sexual behavior. Thus, a single gene defines behavioral selectivity in sex pheromone communication in the silkmoth. Our findings show that a single molecular determinant can not only function as a modulator of behavior but also as an all-or-nothing initiator of a complex species-specific behavioral sequence
- β¦