9 research outputs found

    Magnetic reconnection driven by electron dynamics

    Get PDF
    Magnetic reconnections play essential roles in space, astrophysical, and laboratory plasmas, where the anti-parallel magnetic field components re-connect and the magnetic energy is converted to the plasma energy as Alfvénic out flows. Although the electron dynamics is considered to be essential, it is highly challenging to observe electron scale reconnections. Here we show the experimental results on an electron scale reconnection driven by the electron dynamics in laser-produced plasmas. We apply a weak-external magnetic field in the direction perpendicular to the plasma propagation, where the magnetic field is directly coupled with only the electrons but not for the ions. Since the kinetic pressure of plasma is much larger than the magnetic pressure, the magnetic field is distorted and locally anti-parallel. We observe plasma collimations, cusp and plasmoid like features with optical diagnostics. The plasmoid propagates at the electron Alfvén velocity, indicating a reconnection driven by the electron dynamics

    Invariance concepts and scalability of two-temperature astrophysical radiating fluids

    No full text
    International audienceIn this work, we present a classification of laboratory astrophysics experiments. We introduce different invariance concepts in order to build scaling laws and to determine the astrophysical relevant of laboratory experiments. Finally we present an analysis of the two-temperature radiating fluid scalability

    Astrophysical outflows simulated by laser-driven plasma jets

    No full text
    International audienceWithin the framework of laboratory astrophysics, we form a qualified multidisciplinary group in radiative hydrodynamics. Since 10 years, we have developed laboratory experiments as radiative shocks and plasma jets in connection to astrophysics. Such laboratory experiments provide a unique opportunity to validate models and numerical schemes introduced in radiative hydrodynamics codes. Here we summarize our experimental researches about plasma jets. Laboratory astrophysical experiments have been performed using LULI2000 (France), VULCAN (UK) and GEKKO XII (Japan) intense lasers. The goal of these experiments is to investigate some of the complex features of jets from Young Stellar Objects (YSO), and in particular its interaction with the interstellar medium (ISM)

    Highly radiative shock experiments driven by GEKKO XII

    No full text
    International audienceIn this paper, recent results obtained on highly radiative shocks generated in a xenon filled gas cell using the GEKKO XII laser facility are presented. Data show extremely high shock velocity (>=150 km/s) never achieved before in gas. Preliminary analyses based on theoretical dimensionless numbers and numerical simulations suggest that these radiative shocks reach a new radiative regime where the radiative pressure plays a role in the dynamics and structure of the shock. A major effect observed is a strong anisotropic emission in the downstream gas. This unexpected feature is discussed and compared to available 2D radiation hydrodynamic simulations

    The scalability of the accretion column in magnetic cataclysmic variables: the POLAR project

    No full text
    International audienceIn this paper, theoretical and experimental laboratory astrophysics results are presented from the POLAR project, the main focus of which is to design and diagnose an exact scaled accretion column using powerful lasers. These measurements allow the testing of the astrophysical models of accretion processes present in magnetic cataclysmic variables

    Synthetic Applications of Dialkyl (Chloromethyl)phosphonates and N

    No full text
    corecore