30 research outputs found

    BRAF mutation-specific promoter methylation of FOX genes in colorectal cancer

    Get PDF
    Background: Cancer-specific hypermethylation of (promoter) CpG islands is common during the tumorigenesis of colon cancer. Although associations between certain genetic aberrations, such as BRAF mutation and microsatellite instability, and the CpG island methylator phenotype (CIMP), have been found, the mechanisms by which these associations are established are still unclear. We studied genome-wide DNA methylation differences between

    The homeobox gene MEIS1 is methylated in BRAFp.V600E mutated colon tumors

    Get PDF
    Development of colorectal cancer (CRC) can occur both via gene mutations in tumor suppressor genes and oncogenes, as well as via epigenetic changes, including DNA methylation. Site-specific methylation in CRC regulates expression of tumor-associated genes. Right-sided colon tumors more frequently have BRAFp.V600E mutations and have higher methylation grades when compared to left-sided malignancies. The aim of this study was to identify DNA methylation changes associated with BRAFp.V600E mutation status. We performed methylation profiling of colon tumor DNA, isolated from frozen sections enriched for epithelial cells by macro-dissection, and from paired healthy tissue. Single gene analyses comparing BRAFp.V600E with BRAF wild type revealed MEIS1 as the most significant differentially methylated gene (log2 fold change: 0.89, false discovery rate-adjusted P-value 2.8*10-9). This finding was validated by methylation-specific PCR that was concordant with the microarray data. Additionally, validation in an independent cohort (n=228) showed a significant association between BRAF p.V600E and MEIS1 methylation (OR: 13.0, 95% CI: 5.2 - 33.0, P<0.0001). MEIS1 methylation was associated with decreased MEIS1 gene expression in both patient samples and CRC cell lines. The same was true for gene expression of a truncated form of MEIS1, MEIS1D27, which misses exon 8 and has a proposed tumor suppression function. To trace the origin of MEIS1 promoter methylation, 14 colorectal tumors were flow-sorted. Four out of eight BRAFp.V600E tumor epithelial fractions (50%) showed MEIS1 promoter methylation, as well as three out of eight BRAFp.V600E stromal fractions (38%). Only one out of six BRAF wild type showed MEIS1 promoter methylation in both the epithelial tumor and stromal fractions (17%). In conclusion, BRAFp.V600E colon tumors showed significant MEIS1 promoter methylation, which was associated with decreased MEIS1 gene expression. Copyright

    Cleavage of the actin-capping protein alpha -adducin at Asp-Asp-Ser-Asp633-Ala by caspase-3 is preceded by its phosphorylation on serine 726 in cisplatin-induced apoptosis of renal epithelial cells

    Get PDF
    Decreased phosphorylation of focal adhesion kinase and paxillin is associated with loss of focal adhesions and stress fibers and precedes the onset of apoptosis (van de Water, B., Nagelkerke, J. F., and Stevens, J. L. (1999) J. Biol. Chem. 274, 13328-13337). The cortical actin cytoskeletal network is also lost during apoptosis, yet little is known about the temporal relationship between altered phosphorylation of proteins that are critical in the regulation of this network and their potential cleavage by caspases during apoptosis. Adducins are central in the cortical actin network organization. Cisplatin caused apoptosis of renal proximal tubular epithelial cells, which was associated with the cleavage of alpha-adducin into a 74-kDa fragment; this was blocked by a general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk). Hemagglutinin-tagged human alpha-adducin was cleaved into a similar 74-kDa fragment by caspase-3 in vitro but not by caspase-6 or -7. Asp-Arg-Val-Asp(29)-Glu, Asp-Ile-Val-Asp(208)-Arg, and Asp-Asp-Ser-Asp(633)-Ala were identified as the principal caspase-3 cleavage sites; Asp-Asp-Ser-Asp(633)-Ala was key in the formation of the 74-kDa fragment. Cisplatin also caused an increased phosphorylation of alpha-adducin and gamma-adducin in the MARCKS domain that preceded alpha-adducin cleavage and was associated with loss of adducins from adherens junctions; this was not affected by z-VAD-fmk. In conclusion, the data support a model in which increased phosphorylation of alpha-adducin due to cisplatin leads to dissociation from the cytoskeleton, a situation rendered irreversible by caspase-3-mediated cleavage of alpha-adducin at Asp-Asp-Ser-Asp(633)-Ala.Toxicolog

    Chemical Reaction of Soybean Flavonoids with DNA: A Computational Study Using the Implicit Solvent Model

    Get PDF
    Genistein, daidzein, glycitein and quercetin are flavonoids present in soybean and other vegetables in high amounts. These flavonoids can be metabolically converted to more active forms, which may react with guanine in the DNA to form complexes and can lead to DNA depurination. We assumed two ultimate carcinogen forms of each of these flavonoids, diol epoxide form and diketone form. Density functional theory (DFT) and Hartree-Fock (HF) methods were used to study the reaction thermodynamics between active forms of flavonoids and DNA guanine. Solvent reaction field method of Tomasi and co-workers and the Langevin dipoles method of Florian and Warshel were used to calculate the hydration free energies. Activation free energy for each reaction was estimated using the linear free energy relation. Our calculations show that diol epoxide forms of flavonoids are more reactive than the corresponding diketone forms and are hence more likely flavonoid ultimate carcinogens. Genistein, daidzein and glycitein show comparable reactivity while quercetin is less reactive toward DNA

    Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro

    Get PDF
    Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds.Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. METHODS: Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. RESULTS: All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. CONCLUSION: Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer.We thank the Portuguese Science and Technology Foundation (FCT) for VMG fellowship (ref. SFRH/BI/33503/2008). The authors thank Mr. Antonio Marques from Frutercoop - Azores, who kindly collected and provided the propolis sample for the study

    Rapid Dopaminergic Modulation of the Fish Hypothalamic Transcriptome and Proteome

    Get PDF
    Background - Dopamine (DA) is a major neurotransmitter playing an important role in the regulation of vertebrate reproduction. We developed a novel method for the comparison of transcriptomic and proteomic data obtained from in vivo experiments designed to study the neuroendocrine actions of DA. // Methods and Findings - Female goldfish were injected (i.p.) with DA agonists (D1-specific; SKF 38393, or D2-specific; LY 171555) and sacrificed after 5 h. Serum LH levels were reduced by 57% and 75% by SKF 38393 and LY 171555, respectively, indicating that the treatments produced physiologically relevant responses in vivo. Bioinformatic strategies and a ray-finned fish database were established for microarray and iTRAQ proteomic analysis of the hypothalamus, revealing a total of 3088 mRNAs and 42 proteins as being differentially regulated by the treatments. Twenty one proteins and mRNAs corresponding to these proteins appeared on both lists. Many of the mRNAs and proteins affected by the treatments were grouped into the Gene Ontology categorizations of protein complex, signal transduction, response to stimulus, and regulation of cellular processes. There was a 57% and 14% directional agreement between the differentially-regulated mRNAs and proteins for SKF 38393 and LY 171555, respectively. // Conclusions - The results demonstrate the applicability of advanced high-throughput genomic and proteomic analyses in an amendable well-studied teleost model species whose genome has yet to be sequenced. We demonstrate that DA rapidly regulates multiple hypothalamic pathways and processes that are also known to be involved in pathologies of the central nervous system

    Quercetin, but not its glycosidated conjugate rutin, inhibits azoxymethane-induced colorectal carcinogenesis in F344 rats

    No full text
    The effect of the flavonoid quercetin and its conjugate rutin was investigated on (biomarkers of) colorectal cancer (CRC). Male F344 rats (n = 42/group) were fed 0, 0.1, 1, or 10 g quercetin/kg diet or 40 g rutin/kg diet. Two wk after initial administration of experimental diets, rats were given 2 weekly subcutaneous injections with 15 mg/kg body wt azoxymethane (AOM). At wk 38 post-AOM, quercetin dose dependently (P <0.05) decreased the tumor incidence, multiplicity, and size, whereas tumor incidences were comparable in control (50%) and rutin (45%) groups. The number of aberrant crypt foci (ACF) in unsectioned colons at wk 8 did not correlate with the tumor incidence at wk 38. Moreover, at wk 8 post-AOM, the number and multiplicity of ACF with or without accumulation of beta-catenin were not affected by the 10 g quercetin/kg diet. In contrast, another class of CRC-biomarkers, beta-catenin accumulated crypts, contained less beta-catenin than in controls (P <0.05). After enzymatic deconjugation, the plasma concentration of 3'-O-methyl-quercetin and quercetin at wk 8 was inversely correlated with the tumor incidence at wk 38 (r = -0.95, P </= 0.05). Rats supplemented with 40 g rutin/kg diet had only 30% of the (3'-O-methyl-) quercetin concentration of 10 g quercetin/kg diet-fed rats (P <0.001). In conclusion, quercetin, but not rutin, at a high dose reduced colorectal carcinogenesis in AOM-treated rats, which was not reflected by changes in ACF-parameters. The lack of protection by rutin is probably due to its low bioavailabilit

    Rage signalling promotes intestinal tumourigenesis

    No full text
    Development of colon cancer is a multistep process that is regulated by intrinsic and extrinsic cellular signals. Extrinsic factors include molecular patterns that are derived from either pathogens (PAMPs) or cellular damage (DAMPs). These molecules can promote tumourigenesis by activation of the innate immune system, but the individual contribution of ligands and their receptors remains elusive. The receptor for advanced glycation end products (Rage) is a pattern recognition receptor that binds multiple ligands derived from a damaged cell environment such as Hmgb1 and S100 protein. Here we show that Rage signalling has a critical role in sporadic development of intestinal adenomas, as Apc(Min/+) Rage(-/-) mice are protected against tumourigenesi

    Tissue distribution of quercetin in rats and pigs

    No full text
    Quercetin is a dietary polyphenolic compound with potentially beneficial effects on health. Claims that quercetin has biological effects are based mainly on in vitro studies with quercetin aglycone. However, quercetin is rapidly metabolized, and we have little knowledge of its availability to tissues. To assess the long-term tissue distribution of quercetin, 2 groups of rats were given a 0.1 or 1% quercetin diet [approximately 50 or 500 mg/kg body weight (wt)] for 11 wk. In addition, a 3-d study was done with pigs fed a diet containing 500 mg quercetin/kg body wt. Tissue concentrations of quercetin and quercetin metabolites were analyzed with an optimized extraction method. Quercetin and quercetin metabolites were widely distributed in rat tissues, with the highest concentrations in lungs (3.98 and 15.3 nmol/g tissue for the 0.1 and 1% quercetin diet, respectively) and the lowest in brain, white fat, and spleen. In the short-term pig study, liver (5.87 nmol/g tissue) and kidney (2.51 nmol/g tissue) contained high concentrations of quercetin and quercetin metabolites, whereas brain, heart, and spleen had low concentrations. These studies have for the first time identified target tissues of quercetin, which may help to understand its mechanisms of action in viv
    corecore