17 research outputs found

    A novel estrogen-regulated avian apolipoprotein.

    Get PDF
    In search for yet uncharacterized proteins involved in lipid metabolism of the chicken, we have isolated a hitherto unknown protein from the serum lipoprotein fraction with a buoyant density of ≤1.063 g/ml. Data obtained by protein microsequencing and molecular cloning of cDNA defined a 537 bp cDNA encoding a precursor molecule of 178 residues. As determined by SDS-PAGE, the major circulating form of the protein, which we designate apolipoprotein-VLDL-IV (Apo-IV), has an apparent Mr of approximately 17 kDa. Northern Blot analysis of different tissues of laying hens revealed Apo-IV expression mainly in the liver and small intestine, compatible with an involvement of the protein in lipoprotein metabolism. To further investigate the biology of Apo-IV, we raised an antibody against a GST-Apo-IV fusion protein, which allowed the detection of the 17-kDa protein in rooster plasma, whereas in laying hens it was detectable only in the isolated ≤1.063 g/ml density lipoprotein fraction. Interestingly, estrogen treatment of roosters caused a reduction of Apo-IV in the liver and in the circulation to levels similar to those in mature hens. Furthermore, the antibody crossreacted with a 17-kDa protein in quail plasma, indicating conservation of Apo-IV in avian species. In search for mammalian counterparts of Apo-IV, alignment of the sequence of the novel chicken protein with those of different mammalian apolipoproteins revealed stretches with limited similarity to regions of ApoC-IV and possibly with ApoE from various mammalian species. These data suggest that Apo-IV is a newly identified avian apolipoprotein

    Effects Of Six Apoa5 Variants, Identified In Patients With Severe Hypertriglyceridemia, On In Vitro Lipoprotein Lipase Activity And Receptor Binding

    Full text link
    OBJECTIVE: The purpose of this study was to identify rare APOA5 variants in 130 severe hypertriglyceridemic patients by sequencing, and to test their functionality, since no patient recall was possible. METHODS AND RESULTS: We studied the impact in vitro on LPL activity and receptor binding of 3 novel heterozygous variants, apoAV-E255G, -G271C, and -H321L, together with the previously reported -G185C, -Q139X, -Q148X, and a novel construct -Delta139 to 147. Using VLDL as a TG-source, compared to wild type, apoAV-G255, -L321 and -C185 showed reduced LPL activation (-25% [P=0.005], -36% [P<0.0001], and -23% [P=0.02]), respectively). ApoAV-C271, -X139, -X148, and Delta139 to 147 had little affect on LPL activity, but apoAV-X139, -X148, and -C271 showed no binding to LDL-family receptors, LR8 or LRP1. Although the G271C proband carried no LPL and APOC2 mutations, the H321L carrier was heterozygous for LPL P207L. The E255G carrier was homozygous for LPL W86G, yet only experienced severe hypertriglyceridemia when pregnant. CONCLUSIONS: The in vitro determined function of these apoAV variants only partly explains the high TG levels seen in carriers. Their occurrence in the homozygous state, coinheritance of LPL variants or common APOA5 TG-raising variant in trans, appears to be essential for their phenotypic expression

    Biogenesis of apolipoprotein A-V and its impact on VLDL triglyceride secretion[S]

    No full text
    Apolipoprotein A-V (apoA-V) is a potent regulator of intravascular triglyceride (TG) metabolism, yet its plasma concentration is very low compared with that of other apolipoproteins. To examine the basis for its low plasma concentration, the secretion efficiency of apoA-V was measured in stably transfected McA-RH7777 rat hepatoma cells. Pulse-chase experiments revealed that only ∼20% of newly synthesized apoA-V is secreted into culture medium within 3 h postsynthesis and that ∼65% undergoes presecretory turnover; similar results were obtained with transfected nonhepatic Chinese hamster ovary cells. ApoA-V secreted by McA-RH7777 cells was not associated with cell surface heparin-competable binding sites. When stably transfected McA-RH7777 cells were treated with oleic acid, the resulting increase in TG synthesis caused a reduction in apoA-V secretion, a reciprocal increase in cell-associated apoA-V, and movement of apoA-V onto cytosolic lipid droplets. In a stably transfected doxycycline-inducible McA-RH7777 cell line, apoA-V expression inhibited TG secretion by ∼50%, increased cellular TG, and reduced Z-average VLDL1 particle diameter from 81 to 67 nm; however, no impact on apoB secretion was observed. These data demonstrate that apoA-V inefficiently traffics within the secretory pathway, that its intracellular itinerary can be regulated by changes in cellular TG accumulation, and that apoA-V synthesis can modulate VLDL TG mobilization and secretion
    corecore