37 research outputs found
T-cell derived acetylcholine aids host defenses during enteric bacterial infection with Citrobacter rodentium.
The regulation of mucosal immune function is critical to host protection from enteric pathogens but is incompletely understood. The nervous system and the neurotransmitter acetylcholine play an integral part in host defense against enteric bacterial pathogens. Here we report that acetylcholine producing-T-cells, as a non-neuronal source of ACh, were recruited to the colon during infection with the mouse pathogen Citrobacter rodentium. These ChAT+ T-cells did not exclusively belong to one Th subset and were able to produce IFNγ, IL-17A and IL-22. To interrogate the possible protective effect of acetylcholine released from these cells during enteric infection, T-cells were rendered deficient in their ability to produce acetylcholine through a conditional gene knockout approach. Significantly increased C. rodentium burden was observed in the colon from conditional KO (cKO) compared to WT mice at 10 days post-infection. This increased bacterial burden in cKO mice was associated with increased expression of the cytokines IL-1β, IL-6, and TNFα, but without significant changes in T-cell and ILC associated IL-17A, IL-22, and IFNγ, or epithelial expression of antimicrobial peptides, compared to WT mice. Despite the increased expression of pro-inflammatory cytokines during C. rodentium infection, inducible nitric oxide synthase (Nos2) expression was significantly reduced in intestinal epithelial cells of ChAT T-cell cKO mice 10 days post-infection. Additionally, a cholinergic agonist enhanced IFNγ-induced Nos2 expression in intestinal epithelial cell in vitro. These findings demonstrated that acetylcholine, produced by specialized T-cells that are recruited during C. rodentium infection, are a key mediator in host-microbe interactions and mucosal defenses
DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism
Inverted repeat (IR) sequences in DNA can form non-canonical cruciform
structures to relieve torsional stress. We use Monte Carlo simulations of a
recently developed coarse-grained model of DNA to demonstrate that the
nucleation of a cruciform can proceed through a cooperative mechanism. Firstly,
a twist-induced denaturation bubble must diffuse so that its midpoint is near
the centre of symmetry of the IR sequence. Secondly, bubble fluctuations must
be large enough to allow one of the arms to form a small number of hairpin
bonds. Once the first arm is partially formed, the second arm can rapidly grow
to a similar size. Because bubbles can twist back on themselves, they need
considerably fewer bases to resolve torsional stress than the final cruciform
state does. The initially stabilised cruciform therefore continues to grow,
which typically proceeds synchronously, reminiscent of the S-type mechanism of
cruciform formation. By using umbrella sampling techniques we calculate, for
different temperatures and superhelical densities, the free energy as a
function of the number of bonds in each cruciform along the correlated but
non-synchronous nucleation pathways we observed in direct simulations.Comment: 12 pages main paper + 11 pages supplementary dat
Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes
Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov
A perfect palindrome in the Escherichia coli chromosome forms DNA hairpins on both leading- and lagging-strands
DNA palindromes are hotspots for DNA double strand breaks, inverted duplications and intra-chromosomal translocations in a wide spectrum of organisms from bacteria to humans. These reactions are mediated by DNA secondary structures such as hairpins and cruciforms. In order to further investigate the pathways of formation and cleavage of these structures, we have compared the processing of a 460 base pair (bp) perfect palindrome in the Escherichia coli chromosome with the same construct interrupted by a 20 bp spacer to form a 480 bp interrupted palindrome. We show here that the perfect palindrome can form hairpin DNA structures on the templates of the leading- and lagging-strands in a replication-dependent reaction. In the presence of the hairpin endonuclease SbcCD, both copies of the replicated chromosome containing the perfect palindrome are cleaved, resulting in the formation of an unrepairable DNA double-strand break and cell death. This contrasts with the interrupted palindrome, which forms a hairpin on the lagging-strand template that is processed to form breaks, which can be repaired by homologous recombination
Negative Supercoiling Creates Single-Stranded Patches of DNA That Are Substrates for AID–Mediated Mutagenesis
Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates—which we found to be unique to actively transcribed genes—as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID
DNA word analysis based on the distribution of the distances between symmetric words
We address the problem of discovering pairs of symmetric genomic words (i.e., words and the
corresponding reversed complements) occurring at distances that are overrepresented. For this
purpose, we developed new procedures to identify symmetric word pairs with uncommon empirical
distance distribution and with clusters of overrepresented short distances. We speculate that patterns
of overrepresentation of short distances between symmetric word pairs may allow the occurrence of
non-standard DNA conformations, such as hairpin/cruciform structures. We focused on the human
genome, and analysed both the complete genome as well as a version with known repetitive sequences
masked out. We reported several well-defined features in the distributions of distances, which can be
classified into three different profiles, showing enrichment in distinct distance ranges. We analysed in
greater detail certain pairs of symmetric words of length seven, found by our procedure, characterised
by the surprising fact that they occur at single distances more frequently than expecte
The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome
Although a variety of possible functions have been proposed for inverted repeat sequences (IRs), it is not known which of them might occur in vivo. We investigate this question by assessing the distributions and properties of IRs in the Saccharomyces cerevisiae (SC) genome. Using the IRFinder algorithm we detect 100,514 IRs having copy length greater than 6 bp and spacer length less than 77 bp. To assess statistical significance we also determine the IR distributions in two types of randomization of the S. cerevisiae genome. We find that the S. cerevisiae genome is significantly enriched in IRs relative to random. The S. cerevisiae IRs are significantly longer and contain fewer imperfections than those from the randomized genomes, suggesting that processes to lengthen and/or correct errors in IRs may be operative in vivo. The S. cerevisiae IRs are highly clustered in intergenic regions, while their occurrence in coding sequences is consistent with random. Clustering is stronger in the 3′ flanks of genes than in their 5′ flanks. However, the S. cerevisiae genome is not enriched in those IRs that would extrude cruciforms, suggesting that this is not a common event. Various explanations for these results are considered
Transcriptionally driven cruciform formation in vivo.
We studied the formation of d(A-T)n cruciforms in E.coli cells by probing intracellular plasmid DNA with chloroacetaldehyde followed by fine analysis of modified DNA bases. d(A-T)16 sequences were inserted into specifically designed plasmids either upstream of a single trc promoter, or between two divergent trc promoters. We found that in both cases, induction of transcription by IPTG leads to the transition of the d(A-T)16 stretch into a cruciform state. In the case of two divergent promoters, we observed cruciform formation even without IPTG. Enhanced cruciform formation correlates with the elevation in promoter activity as defined by the opening of the promoter at the -10 to +2 positions. We conclude that transcriptionally driven negative supercoiling provokes cruciform formation in vivo