179 research outputs found

    Gluconeogenic mutations in Pseudomonas aeruginosa: genetic linkage between fructose-bisphosphate aldolase and phosphoglycerate kinase

    Get PDF
    Mutants of mucoid Pseudomonas aeruginosa defective in fructose-bisphosphate aldolase (FBA), NADP-linked glyceraldehyde-3-phosphate dehydrogenase (GAP) or 3-phosphoglycerate kinase (PGK) were unable to grow on gluconeogenic precursors like glutamate, succinate or lactate. The gap and pgk mutants could grow on glucose, gluconate or glycerol, but fba mutants could not. This suggests that the metabolism of glucose or gluconate does not require either PGK or NADP-linked GAP but does require the operation of the aldolase-catalysed step. For gluconeogenesis, however, all three steps are essential. Recombinant plasmids carrying genes for FBA, PGK, GAP or phospho-2-keto-3-deoxygluconate aldolase (EDA) activities were constructed from a genomic library of mucoid P. aeruginosa selecting for complementation of deficiency mutations. Analysis of their complementation profile indicated that one group of plasmids carried fba and pgk genes, while another group carried eda, 6-phosphogluconate dehydratase (edd) and glucose-6-phosphate dehydrogenase (zwf) genes. The gap gene was not linked to any of these markers. Partial restoration of FBA activity in spontaneous revertants of Fba mutants was accompanied by a concomitant loss of PGK activity. These experiments indicate a linkage between the fba and pgk genes on the P. aeruginosa chromosome

    ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters

    Get PDF
    Deletions leading to complete or partial removal of ParB were introduced into the Pseudomonas aeruginosa chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type P. aeruginosa. All parB mutations affected both bacterial growth and swarming and swimming motilities, and increased the production of anucleate cells. Similar effects were observed after inactivation of parA of P. aeruginosa. As complete loss of ParA destabilized its partner ParB it was unclear deficiency of which protein is responsible for the mutant phenotypes. Analysis of four parB mutants showed that complete loss of ParB destabilized ParA whereas three mutants that retained the N-terminal 90 aa of ParB did not. As all four parB mutants demonstrate the same defects it can be concluded that either ParB, or ParA and ParB in combination, plays an important role in nucleoid distribution, growth and motility in P. aeruginosa

    The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling

    Get PDF
    The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa

    Caenorhabditis elegans Semi-Automated Liquid Screen Reveals a Specialized Role for the Chemotaxis Gene cheB2 in Pseudomonas aeruginosa Virulence

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen that causes infections in a variety of animal and plant hosts. Caenorhabditis elegans is a simple model with which one can identify bacterial virulence genes. Previous studies with C. elegans have shown that depending on the growth medium, P. aeruginosa provokes different pathologies: slow or fast killing, lethal paralysis and red death. In this study, we developed a high-throughput semi-automated liquid-based assay such that an entire genome can readily be scanned for virulence genes in a short time period. We screened a 2,200-member STM mutant library generated in a cystic fibrosis airway P. aeruginosa isolate, TBCF10839. Twelve mutants were isolated each showing at least 70% attenuation in C. elegans killing. The selected mutants had insertions in regulatory genes, such as a histidine kinase sensor of two-component systems and a member of the AraC family, or in genes involved in adherence or chemotaxis. One mutant had an insertion in a cheB gene homologue, encoding a methylesterase involved in chemotaxis (CheB2). The cheB2 mutant was tested in a murine lung infection model and found to have a highly attenuated virulence. The cheB2 gene is part of the chemotactic gene cluster II, which was shown to be required for an optimal mobility in vitro. In P. aeruginosa, the main player in chemotaxis and mobility is the chemotactic gene cluster I, including cheB1. We show that, in contrast to the cheB2 mutant, a cheB1 mutant is not attenuated for virulence in C. elegans whereas in vitro motility and chemotaxis are severely impaired. We conclude that the virulence defect of the cheB2 mutant is not linked with a global motility defect but that instead the cheB2 gene is involved in a specific chemotactic response, which takes place during infection and is required for P. aeruginosa pathogenicity

    Low Dose Aerosol Fitness at the Innate Phase of Murine Infection Better Predicts Virulence amongst Clinical Strains of Mycobacterium tuberculosis

    Get PDF
    Background: Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. Methodology/Principal Findings: The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 10 4 CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 10 2 CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. Conclusions/Significance: The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism o

    Characterization of the alginate biosynthetic gene cluster in Pseudomonas syringae pv. syringae

    Get PDF
    Alginate, a copolymer of D-mannuronic acid and L-guluronic acid, is produced by a variety of pseudomonads, including Pseudomonas syringae. Alginate biosynthesis has been most extensively studied in P. aeruginosa, and a number of structural and regulatory genes from this species have been cloned and characterized. In the present study, an alginate-defective (Alg2) mutant of P. syringae pv. syringae FF5 was shown to contain a Tn5 insertion in algL, a gene encoding alginate lyase. A cosmid clone designated pSK2 restored alginate production to the algL mutant and was shown to contain homologs of algD, alg8, alg44, algG, algX (alg60), algL, algF, and algA. The order and arrangement of the structural gene cluster were virtually identical to those previously described for P. aeruginosa. Complementation analyses, however, indicated that the structural gene clusters in P. aeruginosa and P. syringae were not functionally interchangeable when expressed from their native promoters. A region upstream of the algD gene in P. syringae pv. syringae was shown to activate the transcription of a promoterless glucuronidase (uidA) gene and indicated that transcription initiated upstream of algD as described for P. aeruginosa. Transcription of the algD promoter from P. syringae FF5 was significantly higher at 32°C than at 18 or 26°C and was stimulated when copper sulfate or sodium chloride was added to the medium. Alginate gene expression was also stimulated by the addition of the nonionic solute sorbitol, indicating that osmolarity is a signal for algD expression in P. syringae FF5.Peer reviewedPlant Patholog

    Prevention of age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world. Although effective treatment modalities such as anti-VEGF treatment have been developed for neovascular AMD, there is still no effective treatment for geographical atrophy, and therefore the most cost-effective management of AMD is to start with prevention. This review looks at current evidence on preventive measures targeted at AMD. Modalities reviewed include (1) nutritional supplements such as the Age-Related Eye Disease Study (AREDS) formula, lutein and zeaxanthin, omega-3 fatty acid, and berry extracts, (2) lifestyle modifications, including smoking and body-mass-index, and (3) filtering sunlight, i.e. sunglasses and blue-blocking intraocular lenses. In summary, the only proven effective preventive measures are stopping smoking and the AREDS formula

    Copper as a signal for alginate sythesis in Pseudomonas syringae pv. Syringae

    Get PDF
    Plant-associated pseudomonads are commonly exposed to copper bactericides, which are applied to reduce the disease incidence caused by these bacteria. Consequently, many of these bacteria have acquired resistance or tolerance to copper salts. We recently conducted a survey of 37 copper-resistant (Cu^r) Pseudomonas spp., including P. cepacia, P. fluorescens, P. syringae, and P. viridiflava, and found that a subset of the P. syringae strains showed a dramatic increase in exopolysaccharide (EPS) production on mannitol-glutamate medium containing CuSO4 at 250 mg/ml. A modified carbazole assay indicated that the EPS produced on copperamended media contained high levels of uronic acids, suggesting that the EPS was primarily alginic acid. Uronic acids extracted from selected strains were further confirmed to be alginate by demonstrating their sensitivity to alginate lyase and by descending paper chromatography following acid hydrolysis. Subinhibitory levels of arsenate, cobalt, lithium, rubidium, molybdenum, and mercury did not induce EPS production, indicating that alginate biosynthesis is not induced in P. syringae cells exposed to these heavy metals. A 200-kb plasmid designated pPSR12 conferred a stably mucoid phenotype to several P. syringae recipients and also increased their resistance to cobalt and arsenate. A cosmid clone constructed from pPSR12 which conferred a stably mucoid phenotype to several P. syringae strains but not to Pseudomonas aeruginosa was obtained. Results obtained in this study indicate that some of the signals and regulatory genes for alginate production in P. syringae differ from those described for alginate production in P. aeruginosa.Peer reviewedPlant Patholog

    Why do microorganisms produce rhamnolipids?

    Full text link
    corecore