195 research outputs found

    Predicting impact of freshwater exotic species on native biodiversity: Challenges in spatial scaling

    Get PDF
    Global homogenization of biota is underway through worldwide introduction and establishment of nonindigenous (exotic) species. Freshwater ecologists should devote more attention to exotic species for two reasons. First, exotics provide an opportunity to test hypotheses about what characteristics of species or habitats are related to successful establishment or invasibility, respectively. Second, predicting which species will cause large ecological change is an important challenge for natural resource managers. Rigorous statistical relationships linking species characteristics to probability of establishment or of causing ecological impacts are needed. In addition, it is important to know how reliable different sorts of experiments are in guiding predictions. We address this issue with different spatial scales of experiments testing the impact of two predators on native snail assemblages in northern Wisconsin USA lakes: an exotic crayfish, the rusty crayfish (Orconectes rusticus); and a native fish predator, the pumpkinseed sunfish (Lepomis gibossus). For the crayfish, laboratory experiments, a field cage experiment, and a snapshot survey of 21 lakes gave consistent results: the crayfish reduced abundance and species richness of native snails. Laboratory and field experiments suggested that pumpkinseed sunfish should have a similar impact, but the lake survey suggested little impact. Unfortunately, no algorithms exist to guide scaling up from small-scale experiments to the whole-lake, long-term management scale. To protect native biodiversity, management of freshwater exotic species should be targeted on lakes or drainages that are both vulnerable to colonization by an exotic, and that harbour endemic species. Management should focus on preventing introduction because eradication after establishment is usually not possible.The following grants funded our research: NSFBSR85-00775, NSFBSR89-07407, EPA CR820290-0T -0 (to DML)

    Neonicotinoids thiamethoxam and clothianidin adversely affect the colonisation of invertebrate populations in aquatic microcosms

    Get PDF
    Surface waters are sometimes contaminated with neonicotinoids: a widespread, persistent, systemic class of insecticide with leaching potential. Previous ecotoxicological investigations of this chemical class in aquatic ecosystems have largely focused on the impacts of the neonicotinoid imidacloprid; few empirical, manipulative studies have investigated the effect on invertebrate abundances of two other neonicotinoids which are now more widely used: clothianidin and thiamethoxam. In this study, we employ a simple microcosm semi-field design, incorporating a one-off contamination event, to investigate the effect of these pesticides at field-realistic levels (ranging from 0 to 15 ppb) on invertebrate colonisation and survival in small ephemeral ponds. In line with previous research on neonicotinoid impacts on aquatic invertebrates, significant negative effects of both neonicotinoids were found. There were clear differences between the two chemicals, with thiamethoxam generally producing stronger negative effects than clothianidin. Populations of Chironomids (Diptera) and Ostracoda were negatively affected by both chemicals, while Culicidae appeared to be unaffected by clothianidin at the doses used. Our data demonstrate that field-realistic concentrations of neonicotinoids are likely to reduce populations of invertebrates found in ephemeral ponds, which may have knock on effects up the food chain. We highlight the importance of developing pesticide monitoring schemes for European surface waters

    Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment

    Get PDF
    One of the most common approaches for investigating the ecology of spatially complex environments is to examine a single biotic assemblage present, such as macroinvertebrates. Underlying this approach are assumptions that sampled and unsampled taxa respond similarly to environmental gradients and exhibit congruence across different sites. These assumptions were tested for five benthic groups of various sizes (archaea, bacteria, microbial eukaryotes/protists, meiofauna and macrofauna) in Plymouth Sound, a harbour with many different pollution sources. Sediments varied in granulometry, hydrocarbon and trace metal concentrations. Following variable reduction, canonical correspondence analysis did not identify any associations between sediment characteristics and assemblage composition of archaea or macrofauna. In contrast, variation in bacteria was associated with granulometry, trace metal variations and bioturbation (e.g. community bioturbation potential). Protists varied with granulometry, hydrocarbon and trace metal predictors. Meiofaunal variation was associated with hydrocarbon and bioturbation predictors. Taxon turnover between sites varied with only three out of 10 group pairs showing congruence (meiofauna-protists, meiofauna-macrofauna and protists-macrofauna). While our results support using eukaryotic taxa as proxies for others, the lack of congruence suggests caution should be applied to inferring wider indicator or functional interpretations from studies of a single biotic assemblage

    Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown.

    Get PDF
    Aquatic hyphomycetes play an essential role in the decomposition of allochthonous organic matter which is a fundamental process driving the functioning of forested headwater streams. We studied the effect of anthropogenic acidification on aquatic hyphomycetes associated with decaying leaves of Fagus sylvatica in six forested headwater streams (pH range, 4.3-7.1). Non-metric multidimensional scaling revealed marked differences in aquatic hyphomycete assemblages between acidified and reference streams. We found strong relationships between aquatic hyphomycete richness and mean Al concentration (r = -0.998, p < 0.0001) and mean pH (r = 0.962, p < 0.002), meaning that fungal diversity was severely depleted in acidified streams. By contrast, mean fungal biomass was not related to acidity. Leaf breakdown rate was drastically reduced under acidic conditions raising the issue of whether the functioning of headwater ecosystems could be impaired by a loss of aquatic hyphomycete species

    Benthic community structure and ecosystem functions in above- and below-waterfall pools in Borneo

    Get PDF
    Waterfalls are geomorphic features that often partition streams into discrete zones. Our study examined aquatic communities, litter decomposition and periphyton growth rates for above- and below-waterfall pools in Ulu Temburong National Park, Brunei. We observed higher fish densities in below-waterfall pools (0.24 fish m−2 vs. 0.02 fish m−2 in above-waterfall pools) and higher shrimp abundance in above-waterfall pools (eight shrimp/pool vs. less than one shrimp/pool in below-waterfall pools). However, macroinvertebrate densities (excluding shrimp) were similar among both pool types. Ambient periphyton was higher in below-waterfall pools in 2013 (4.3 vs. 2.8 g m−2 in above-waterfall pools) and 2014 (4.8 vs. 3.4 g m−2 in above-waterfall pools), while periphyton growth rates varied from 0.05 to 0.26 g m−2 days−1 and were significantly higher in below-waterfall pools in 2014. Leaf litter decomposition rates (0.001 to 0.024 days−1) did not differ between pool types, suggesting that neither shrimp nor fish densities had consistent impacts on this ecosystem function. Regardless, this research demonstrates the varied effects of biotic and abiotic factors on community structure and ecosystem function. Our results have highlighted the importance of discontinuities, such as waterfalls, in tropical streams.</p

    Functional diversity: a review of methodology and current knowledge in freshwater macroinvertebrate research

    Get PDF

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Macronutrient modifications of optimal foraging theory: An approach using indifference curves applied to some modern foragers

    Full text link
    The use of energy (calories) as the currency to be maximized per unit time in Optimal Foraging Models is considered in light of data on several foraging groups. Observations on the Ache, Cuiva, and Yora foragers suggest men do not attempt to maximize energetic return rates, but instead often concentrate on acquiring meat resources which provide lower energetic returns. The possibility that this preference is due to the macronutrient composition of hunted and gathered foods is explored. Indifference curves are introduced as a means of modeling the tradeoff between two desirable commodities, meat (protein-lipid) and carbohydrate, and a specific indifference curve is derived using observed choices in five foraging situatiuons. This curve is used to predict the amount o meat that Mbuti foragers will trade for carbohydrate, in an attempt to test the utility of the approach .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44481/1/10745_2004_Article_BF00888091.pd
    • 

    corecore