161 research outputs found

    Ebullition of methane from peatlands: Does peat act as a signal shredder?

    Get PDF
    Bubbling (ebullition) of greenhouse gases, particularly methane, from peatlands has been attributed to environmental forcings, such as changes in atmospheric pressure. However, observations from peat soils suggest that ebullition and environmental forcing may not always be correlated and that interactions between bubbles and the peat structure may be the cause of such decoupling. To investigate this possibility, we used a simple computer model (Model of Ebullition and Gas storAge) to simulate methane ebullition from a model peat. We found that lower porosity peat can store methane bubbles for lengthy periods of time, effectively buffering or moderating ebullition so that it no longer reflects bubble production signals. Our results suggest that peat structure may act as a “signal shredder” and needs to be taken into account when measuring and modeling ebullition

    The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media

    Get PDF
    The original publication can be found at www.springerlink.comDeep bed filtration of particle suspensions in porous media occurs during water injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in groundwater etc. The basic features of the process are particle capture by the porous medium and consequent permeability reduction. Models for deep bed filtration contain two quantities that represent rock and fluid properties: the filtration function, which is the fraction of particles captured per unit particle path length, and formation damage function, which is the ratio between reduced and initial permeabilities. These quantities cannot be measured directly in the laboratory or in the field; therefore, they must be calculated indirectly by solving inverse problems. The practical petroleum and environmental engineering purpose is to predict injectivity loss and particle penetration depth around wells. Reliable prediction requires precise knowledge of these two coefficients. In this work we determine these quantities from pressure drop and effluent concentration histories measured in one-dimensional laboratory experiments. The recovery method consists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov regularization term is added to the functional. The filtration function is recovered by optimizing a non-linear functional with box constraints; this functional involves the effluent concentration history. The permeability reduction is recovered likewise, taking into account the filtration function already found, and the functional involves the pressure drop history. In both cases, the functionals are derived from least square formulations of the deviation between experimental data and quantities predicted by the model.Alvarez, A. C., Hime, G., Marchesin, D., Bedrikovetski, P

    The effect of sampling effort on estimates of methane ebullition from peat

    Get PDF
    We investigated the effect of sample size and sampling duration on methane bubble flux (ebullition) estimates from peat using a computer model. A field scale (10 m), seasonal (> 100 days) simulation of ebullition from a two-dimensional structurally-varying peat profile was modelled at fine spatial resolution (1 mm × 1 mm). The spatial and temporal scale of this simulation was possible because of the computational efficiency of the reduced complexity approach that was implemented, and patterns of simulated ebullition were consistent with those found in the field and laboratory. The simulated ebullition from the peat profile suggested that decreases in peat porosity – which cause increases in gas storage – produce ebullition that becomes increasingly patchy in space and erratic in time. By applying different amounts of spatial and temporal sampling effort it was possible to determine the uncertainty in ebullition estimates from the peatland. The results suggest that traditional methods to measure ebullition can equally overestimate and underestimate flux by 20% and large ebullition events can lead to large overestimations of flux when sampling effort is low. Our findings support those of field studies, and we recommend that ebullition should be measured frequently (hourly to daily) and at many locations (n > 14)

    Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions.

    Get PDF
    The environmental chemodynamics of hydrophobic organic chemicals (HOCs) are often rate-limited by diffusion in stagnant boundary layers. This study investigated whether motile microorganisms can act as microbial carriers that enhance mass transfer of HOCs through diffusive boundary layers. A new experimental system was developed that allows (1) generation of concentration gradients of HOCs under the microscope, (2) exposure and direct observation of microorganisms in such gradients, and (3) quantification of HOC mass transfer. Silicone O-rings were integrated into a Dunn chemotaxis chamber to serve as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism <i>Tetrahymena pyriformis</i> to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo­[a]­pyrene). Increasing mass transfer enhancement with hydrophobicity indicated PAH co-transport with the motile organisms. Fluorescence microscopy confirmed such transport. The effective diffusivity of <i>T. pyriformis</i>, determined by video imaging microscopy, was found to exceed molecular diffusivities of the PAHs up to four-fold. Cell-bound PAH fractions were determined to range from 28% (naphthalene) to 92% (pyrene). Motile microorganisms can therefore function as effective carriers for HOCs under diffusive conditions and might significantly enhance mobility and availability of HOCs

    Use of ecstasy and other psychoactive substances among school-attending adolescents in Taiwan: national surveys 2004–2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the backdrop of a global ecstasy epidemic, this study sought to examine the trend, correlates, and onset sequence of ecstasy use among adolescents in Taiwan, where a well-established gateway drug such as marijuana is much less popular.</p> <p>Methods</p> <p>A multistage probability survey of school-attending adolescents in grades 7, 9, 10, and 12, aged 11–19 years, was conducted in 2004, 2005, and 2006. A self-administered anonymous questionnaire elicited response rates ranging from 94.3% to 96.6%. The sample sizes were 18232 respondents in 2004, 17986 in 2005, and 17864 in 2006.</p> <p>Results</p> <p>In terms of lifetime prevalence and incidence, ecstasy and ketamine by and large appeared as the first and second commonly used illegal drugs, respectively, among middle (grades 7 and 9) and high school students (grades 10 and 12) during the 3-year survey period; however, this order was reversed in the middle school-aged students starting in 2006. Having sexual experience, tobacco use, and betel nut use were factors consistently associated with the onset of ecstasy use across years. The majority of ecstasy users had been involved in polydrug use, such as the use of ketamine (41.4%–53.5%), marijuana (12.7%–18.7%), and methamphetamine (4.2%–9.5%).</p> <p>Conclusion</p> <p>From 2004 to 2006, a decline was noted in the prevalence and incidence rate of ecstasy, a leading illegal drug used by school-attending adolescents in Taiwan since the early 2000s. The emerging ketamine use trend may warrant more attention in the future.</p

    Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures

    Full text link
    corecore