358 research outputs found

    Analysis of serum changes in response to a high fat high cholesterol diet challenge reveals metabolic biomarkers of atherosclerosis

    Get PDF
    Atherosclerotic plaques are characterized by an accumulation of macrophages, lipids, smooth muscle cells, and fibroblasts, and, in advanced stages, necrotic debris within the arterial walls. Dietary habits such as high fat and high cholesterol (HFHC) consumption are known risk factors for atherosclerosis. However, the key metabolic contributors to diet-induced atherosclerosis are far from established. Herein, we investigate the role of a 2-year HFHC diet challenge in the metabolic changes of development and progression of atherosclerosis. We used a non-human primate (NHP) model (baboons, n = 60) fed a HFHC diet for two years and compared metabolomic profiles in serum from animals on baseline chow with serum collected after the challenge diet using two-dimensional gas chromatography time-of-flight mass-spectrometry (2D GC-ToF-MS) for untargeted metabolomic analysis, to quantify metabolites that contribute to atherosclerotic lesion formation. Further, clinical biomarkers associated with atherosclerosis, lipoprotein measures, fat indices, and arterial plaque formation (lesions) were quantified. Using two chemical derivatization (i.e., silylation) approaches, we quantified 321 metabolites belonging to 66 different metabolic pathways, which revealed significantly different metabolic profiles of HFHC diet and chow diet fed baboon sera. We found heritability of two important metabolites, lactic acid and asparagine, in the context of diet-induced metabolic changes. In addition, abundance of cholesterol, lactic acid, and asparagine were sex-dependent. Finally, 35 metabolites correlated (R2, 0.068-0.271, P \u3c 0.05) with total lesion burden assessed in three arteries (aortic arch, common iliac artery, and descending aorta) which could serve as potential biomarkers pending further validation. This study demonstrates the feasibility of detecting sex-specific and heritable metabolites in NHPs with diet-induced atherosclerosis using untargeted metabolomics allowing understanding of atherosclerotic disease progression in humans

    A Quantitative Trait Locus on Chromosome 5p Influences D-Dimer Levels in the San Antonio Family Heart Study

    Get PDF
    Background. D-dimer is associated with increasing severity of atherosclerosis and with increased risk of a cardiovascular disease (CVD). Methods and Results. To better understand this risk factor, we performed a genome scan on 803 (301 males and 502 females) Mexican Americans in the San Antonio Family Heart Study (SAFHS). The SAFHS is ideal for the discovery of quantitative trait loci (QTLs) influencing CVD because CVD risk factors are prevalent in Mexican Americans of San Antonio and because the study design involves large families, which is optimal for QTL discovery. D-dimer levels were normalized in our study. We found that D-dimer levels were heritable, at about 23% heritability (P ≈ .00001). In a linkage analysis employing 432 microsatellite markers, we found strong evidence of a QTL on chromosome 5p with a lod score of 3.32 at 21 centiMorgans (cM). We also found suggestive evidence of a QTL on chromosome 2q with a lod score of 2.33 at 207 cM. Conclusions. To our knowledge, the putative QTL on chromosome 5p is novel. The possible QTL on chromosome 2q is discussed in relation to a recent report of linkage of a related hemostatic factor to the same location. These results warrant further investigation

    Genetic variants and physical activity interact to affect bone density in Hispanic children

    Get PDF
    Background: Our aim was to investigate if moderate to vigorous physical activity (MVPA), calcium intake interacts with bone mineral density (BMD)-related single nucleotide polymorphisms (SNPs) to influence BMD in 750 Hispanic children (4-19y) of the cross-sectional Viva La Familia Study. Methods: Physical activity and dietary intake were measured by accelerometers and multiple-pass 24 h dietary recalls, respectively. Total body and lumbar spine BMD were measured by dual energy X-ray absorptiometry. A polygenic risk score (PRS) was computed based on SNPs identified in published literature. Regression analysis was conducted with PRSs, MVPA and calcium intake with total body and lumbar spine BMD. Results: We found evidence of statistically significant interaction effects between the PRS and MVPA on total body BMD and lumbar spine BMD (p \u3c 0.05). Higher PRS was associated with a lower total body BMD (β = − 0.040 ± 0.009, p = 1.1 × 10− 5 ) and lumbar spine BMD (β = − 0.042 ± 0.013, p = 0.0016) in low MVPA group, as compared to high MVPA group (β = − 0.015 ± 0.006, p = 0.02; β = 0.008 ± 0.01, p = 0.4, respectively). Discussion: The study indicated that calcium intake does not modify the relationship between genetic variants and BMD, while it implied physical activity interacts with genetic variants to affect BMD in Hispanic children. Due to limited sample size of our study, future research on gene by environment interaction on bone health and functional studies to provide biological insights are needed

    Successful pharmaceutical-grade streptozotocin (STZ)-induced hyperglycemia in a conscious tethered baboon (Papio hamadryas) model

    Get PDF
    Background Non-human primate (NHP) diabetic models using chemical ablation of b-cells with STZ have been achieved by several research groups. Chemotherapeutic STZ could lead to serious adverse events including nephrotoxicity, hepatotoxicity, and mortality. Methods We implemented a comprehensive therapeutic strategy that included the tether system, permanent indwelling catheter implants, an aggressive hydration protocol, management for pain with IV nubain and anxiety with IV midazolam, moment-by-moment monitoring of glucose levels post-STZ administration, and continuous intravenous insulin therapy. Results A triphasic response in blood glucose after STZ administration was fully characterized. A dangerous hypoglycemic phase was also detected in all baboons. Other significant findings were hyperglycemia associated with low levels of plasma leptin, insulin and C-peptide concentrations, hyperglucagonemia, and elevated non-esterified fatty acids (NEFA) concentrations. Conclusions We successfully induced frank diabetes by IV administering a single dose of pharmaceutical-grade STZ safely and without adverse events in conscious tethered baboons

    Successful β cells islet regeneration in streptozotocin-induced diabetic baboons using ultrasound-targeted microbubble gene therapy with cyclinD2/CDK4/GLP1

    Get PDF
    Both major forms of diabetes mellitus (DM) involve β-cell destruction and dysfunction. New treatment strategies have focused on replenishing the deficiency of β-cell mass common to both major forms of diabetes by islet transplantation or β-cell regeneration. The pancreas, not the liver, is the ideal organ for islet regeneration, because it is the natural milieu for islets. Since islet mass is known to increase during obesity and pregnancy, the concept of stimulating pancreatic islet regeneration in vivo is both rational and physiologic. This paper proposes a novel approach in which non-viral gene therapy is targeted to pancreatic islets using ultrasound targeted microbubble destruction (UTMD) in a non-human primate model (NHP), the baboon. Treated baboons received a gene cocktail comprised of cyclinD2, CDK, and GLP1, which in rats results in robust and durable islet regeneration with normalization of blood glucose, insulin, and C-peptide levels. We were able to generate important preliminary data indicating that gene therapy by UTMD can achieve in vivo normalization of the intravenous (IV) glucose tolerance test (IVGTT) curves in STZ hyperglycemic-induced conscious tethered baboons. Immunohistochemistry clearly demonstrated evidence of islet regeneration and restoration of β-cell mass

    Central GIP signaling stimulates peripheral GIP release and promotes insulin and pancreatic polypeptide secretion in nonhuman primates

    Get PDF
    Glucose-dependent insulinotropic polypeptide (GIP) has important actions on whole body metabolic function. GIP and its receptor are also present in the central nervous system and have been linked to neurotrophic actions. Metabolic effects of central nervous system GIP signaling have not been reported. We investigated whether centrally administered GIP could increase peripheral plasma GIP concentrations and influence the metabolic response to a mixed macronutrient meal in nonhuman primates. An infusion and sampling system was developed to enable continuous intracerebroventricular (ICV) infusions with serial venous sampling in conscious nonhuman primates. Male baboons (Papio sp.) that were healthy and had normal body weights (28.9 ± 2.1 kg) were studied (n = 3). Animals were randomized to receive continuous ICV infusions of GIP (20 pmol·kg−1·h−1) or vehicle before and over the course of a 300-min mixed meal test (15 kcal/kg, 1.5g glucose/kg) on two occasions. A significant increase in plasma GIP concentration was observed under ICV GIP infusion (66.5 ± 8.0 vs. 680.6 ± 412.8 pg/ml, P = 0.04) before administration of the mixed meal. Increases in postprandial, but not fasted, insulin (P = 0.01) and pancreatic polypeptide (P = 0.04) were also observed under ICV GIP. Effects of ICV GIP on fasted or postprandial glucagon, glucose, triglyceride, and free fatty acids were not observed. Our data demonstrate that central GIP signaling can promote increased plasma GIP concentrations independent of nutrient stimulation and increase insulin and pancreatic polypeptide responses to a mixed meal

    Predictive models of insulin resistance derived from simple morphometric and biochemical indices related to obesity and the metabolic syndrome in baboons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-human primates are valuable models for the study of insulin resistance and human obesity. In baboons, insulin sensitivity levels can be evaluated directly with the euglycemic clamp and is highly predicted by adiposity, metabolic markers of obesity and impaired glucose metabolism (i.e. percent body fat by DXA and HbA<sub>1c</sub>). However, a simple method to screen and identify obese insulin resistant baboons for inclusion in interventional studies is not available.</p> <p>Methods</p> <p>We studied a population of twenty baboons with the euglycemic clamp technique to characterize a population of obese nondiabetic, insulin resistant baboons, and used a multivariate linear regression analysis (adjusted for gender) to test different predictive models of insulin sensitivity (insulin-stimulated glucose uptake = Rd) using abdominal circumference and fasting plasma insulin. Alternatively, we tested in a separate baboon population (n = 159), a simpler model based on body weight and fasting plasma glucose to predict the whole-body insulin sensitivity (Rd/SSPI) derived from the clamp.</p> <p>Results</p> <p>In the first model, abdominal circumference explained 59% of total insulin mediated glucose uptake (Rd). A second model, which included fasting plasma insulin (log transformed) and abdominal circumference, explained 64% of Rd. Finally, the model using body weight and fasting plasma glucose explained 51% of Rd/SSPI. Interestingly, we found that percent body fat was directly correlated with the adipocyte insulin resistance index (r = 0.755, p < 0.0001).</p> <p>Conclusion</p> <p>In baboons, simple morphometric measurements of adiposity/obesity, (i.e. abdominal circumference), plus baseline markers of glucose/lipid metabolism, (i.e. fasting plasma glucose and insulin) provide a feasible method to screen and identify overweight/obese insulin resistant baboons for inclusion in interventional studies aimed to study human obesity, insulin resistance and type 2 diabetes mellitus.</p
    corecore