2,029 research outputs found

    5-State Rotation-Symmetric Number-Conserving Cellular Automata are not Strongly Universal

    Full text link
    We study two-dimensional rotation-symmetric number-conserving cellular automata working on the von Neumann neighborhood (RNCA). It is known that such automata with 4 states or less are trivial, so we investigate the possible rules with 5 states. We give a full characterization of these automata and show that they cannot be strongly Turing universal. However, we give example of constructions that allow to embed some boolean circuit elements in a 5-states RNCA

    Acumulación de Cu y Zn por célular microalgales marinas de Nannochloropsis gaditana (Eustigmatophyceae) inmovilizadas en alginato de calcio

    Get PDF
    13 páginas, 5 figuras, 2 tablas.[EN] Different experiments about the accumulation capacity for copper and zinc were carried out on the marine microalgae Nannochloropsis gaditana Lubián (Eustigmatophyceae). A 24-hour study of the evolution of accumulated metal in the beads revealed two possible accumulation phases. Accumulation differences between free and immobilized microalgal cells were investigated finding no differences for copper, and little differences for zinc. Free cells accumulated practically 100% Cu or Zn in the media under experimental conditions. Experiments in order to compare the accumulation capacity of living vs. dead cells were designed too, obtaining the largest accumulation levels for both metals in the beads containing immobilized living microalgae. In experiments carried out in continuous-flow reactors, beads with entrapped cells showed to be more efficient removing Cu and Zn than beads without cells. In all the experiments, the calcium alginate beads showed strong affinity for Cu. Similar results were obtained when accumulation by packed beads in columns was tested, but efficacy was higher if this design was used (beads with cells retain 80% of Cu introduced in the column).[ES] Se han realizado distintos experimentos sobre la capacidad de acumulación de cobre y zinc por parte de la microalga marina Nannochloropsis gaditana Lubián (Eustigmatophyceae). Un estudio de la evolución del metal acumulado durante 24 horas reveló la existencia de dos posibles fases de acumulación. Se investigaron las diferentes capacidades de acumulación de células microalgales libres e inmovilizadas, no encontrándose diferencias para el cobre y pequeñas diferencias para el zinc. Las células libres acumularon prácticamente el 100% del Cu o Zn presentes en el medio, en las condiciones experimentales. Se desarrollaron experimentos encaminados a determinar la capacidad de acumulación de estos metales por parte de algas inmovilizadas vivas frente a la de algas inmovilizadas muertas, encontrándose los niveles acumulativos más altos para ambos metales en las gotas de alginato que contenían algas vivas. En experimentos realizados en reactores de flujo continuo, las gotas de alginato con células inmovilizadas en su interior demostraron ser más eficientes en cuanto a la retirada de Cu y Zn del medio que las gotas sin algas. En todos los experimentos realizados se observa una fuerte afinidad del Cu por el alginato de calcio. Se obtuvieron resultados similares cuando se ensayó la acumulación de metales en gotas de alginato dispuestas en columnas llenas, aunque la eficacia fue mayor cuando se usó este último diseño (las gotas de alginato con células retuvieron el 80% del Cu introducido en la columna).Peer reviewe

    Shift-Symmetric Configurations in Two-Dimensional Cellular Automata: Irreversibility, Insolvability, and Enumeration

    Full text link
    The search for symmetry as an unusual yet profoundly appealing phenomenon, and the origin of regular, repeating configuration patterns have long been a central focus of complexity science and physics. To better grasp and understand symmetry of configurations in decentralized toroidal architectures, we employ group-theoretic methods, which allow us to identify and enumerate these inputs, and argue about irreversible system behaviors with undesired effects on many computational problems. The concept of so-called configuration shift-symmetry is applied to two-dimensional cellular automata as an ideal model of computation. Regardless of the transition function, the results show the universal insolvability of crucial distributed tasks, such as leader election, pattern recognition, hashing, and encryption. By using compact enumeration formulas and bounding the number of shift-symmetric configurations for a given lattice size, we efficiently calculate the probability of a configuration being shift-symmetric for a uniform or density-uniform distribution. Further, we devise an algorithm detecting the presence of shift-symmetry in a configuration. Given the resource constraints, the enumeration and probability formulas can directly help to lower the minimal expected error and provide recommendations for system's size and initialization. Besides cellular automata, the shift-symmetry analysis can be used to study the non-linear behavior in various synchronous rule-based systems that include inference engines, Boolean networks, neural networks, and systolic arrays.Comment: 22 pages, 9 figures, 2 appendice

    Recognising Desire: A psychosocial approach to understanding education policy implementation and effect

    Get PDF
    It is argued that in order to understand the ways in which teachers experience their work - including the idiosyncratic ways in which they respond to and implement mandated education policy - it is necessary to take account both of sociological and of psychological issues. The paper draws on original research with practising and beginning teachers, and on theories of social and psychic induction, to illustrate the potential benefits of this bipartisan approach for both teachers and researchers. Recognising the significance of (but somewhat arbitrary distinction between) structure and agency in teachers’ practical and ideological positionings, it is suggested that teachers’ responses to local and central policy changes are governed by a mix of pragmatism, social determinism and often hidden desires. It is the often underacknowledged strength of desire that may tip teachers into accepting and implementing policies with which they are not ideologically comfortable

    A complementary view on the growth of directory trees

    Full text link
    Trees are a special sub-class of networks with unique properties, such as the level distribution which has often been overlooked. We analyse a general tree growth model proposed by Klemm {\em et. al.} (2005) to explain the growth of user-generated directory structures in computers. The model has a single parameter qq which interpolates between preferential attachment and random growth. Our analysis results in three contributions: First, we propose a more efficient estimation method for qq based on the degree distribution, which is one specific representation of the model. Next, we introduce the concept of a level distribution and analytically solve the model for this representation. This allows for an alternative and independent measure of qq. We argue that, to capture real growth processes, the qq estimations from the degree and the level distributions should coincide. Thus, we finally apply both representations to validate the model with synthetically generated tree structures, as well as with collected data of user directories. In the case of real directory structures, we show that qq measured from the level distribution are incompatible with qq measured from the degree distribution. In contrast to this, we find perfect agreement in the case of simulated data. Thus, we conclude that the model is an incomplete description of the growth of real directory structures as it fails to reproduce the level distribution. This insight can be generalised to point out the importance of the level distribution for modeling tree growth.Comment: 16 pages, 7 figure

    A Computation in a Cellular Automaton Collider Rule 110

    Full text link
    A cellular automaton collider is a finite state machine build of rings of one-dimensional cellular automata. We show how a computation can be performed on the collider by exploiting interactions between gliders (particles, localisations). The constructions proposed are based on universality of elementary cellular automaton rule 110, cyclic tag systems, supercolliders, and computing on rings.Comment: 39 pages, 32 figures, 3 table

    The significance of 'the visit' in an English category-B prison: Views from prisoners, prisoners' families and prison staff

    Get PDF
    A number of claims have been made regarding the importance of prisoners staying in touch with their family through prison visits, firstly from a humanitarian perspective of enabling family members to see each other, but also regarding the impact of maintaining family ties for successful rehabilitation, reintegration into society and reduced re-offending. This growing evidence base has resulted in increased support by the Prison Service for encouraging the family unit to remain intact during a prisoner’s incarceration. Despite its importance however, there has been a distinct lack of research examining the dynamics of families visiting relatives in prison. This paper explores perceptions of the same event – the visit – from the families’, prisoners’ and prison staffs' viewpoints in a category-B local prison in England. Qualitative data was collected with 30 prisoners’ families, 16 prisoners and 14 prison staff, as part of a broader evaluation of the visitors’ centre. The findings suggest that the three parties frame their perspective of visiting very differently. Prisoners’ families often see visits as an emotional minefield fraught with practical difficulties. Prisoners can view the visit as the highlight of their time in prison and often have many complaints about how visits are handled. Finally, prison staff see visits as potential security breaches and a major organisational operation. The paper addresses the current gap in our understanding of the prison visit and has implications for the Prison Service and wider social policy

    Models and metaphors: complexity theory and through-life management in the built environment

    Get PDF
    Complexity thinking may have both modelling and metaphorical applications in the through-life management of the built environment. These two distinct approaches are examined and compared. In the first instance, some of the sources of complexity in the design, construction and maintenance of the built environment are identified. The metaphorical use of complexity in management thinking and its application in the built environment are briefly examined. This is followed by an exploration of modelling techniques relevant to built environment concerns. Non-linear and complex mathematical techniques such as fuzzy logic, cellular automata and attractors, may be applicable to their analysis. Existing software tools are identified and examples of successful built environment applications of complexity modelling are given. Some issues that arise include the definition of phenomena in a mathematically usable way, the functionality of available software and the possibility of going beyond representational modelling. Further questions arising from the application of complexity thinking are discussed, including the possibilities for confusion that arise from the use of metaphor. The metaphor of a 'commentary machine' is suggested as a possible way forward and it is suggested that an appropriate linguistic analysis can in certain situations reduce perceived complexity

    PNAS plus: plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state

    Get PDF
    The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided
    corecore