43 research outputs found
New algorithm for energy dispatch scheduling of grid-connected solar photovoltaic system with battery storage system
Purpose. In last decade the problem of energy management system (EMS) for electric network has received special attention from academic researchers and electricity companies. In this paper, a new algorithm for EMS of a photovoltaic (PV) grid connected system, combined to an storage system is proposed for reducing the character of intermittence of PVs power which infect the stability of electric grid. In simulation model, the PV system and the energy storage system are connected to the same DC bus, whereas EMS controls the power flow from the PV generator to the grid based on the predetermined level of PV power. In the case where the PV power is less than the predefined threshold, energy is stored in the batteries banc which will be employed in the peak energy demand (PED) times. Otherwise, it continues to feed the principal grid. The novelty of the proposed work lies in a new algorithm (smart algorithm) able to determine the most suitable (optimal) hours to switching between battery, Solar PVs, and principal grid based on historical consumption data and also determine the optimal amount of storage energy that be injected during the peak demand. Methods. The solution of the problem was implemented in the Matlab R2010a Platform and the simulation conducted on Laptop with a 2.5 GHz processor and 4 GB RAM. Results. Simulation results show that the proposed model schedules the time ON/OFF of the switch in the most optimal way, resulting in absolute control of power electric path, i.e. precise adaptation at the peak without compromising consumers comfort. In addition, other useful results can be directly obtained from the developed scheme. Thus, the results confirm the superiority of the proposed strategy compared to other improved techniques.Мета. В останнє десятиліття проблемі системи енергоменеджменту (СЕМ) для електричної мережі приділялася особлива увага з боку науковців та електроенергетичних компаній. У цій роботі пропонується новий алгоритм для СЕМ фотоелектричної (ФЕ) системи, підключеної до мережі, об'єднаної з системою накопичення енергії для зменшення характеру переривчастості потужності ФЕ системи, що впливає на стабільність електричної мережі. У розрахунковій моделі ФЕ система та система накопичення енергії підключені до однієї і тієї ж шини постійного струму, тоді як СЕМ керує потоком потужності від ФЕ генератора до мережі на основі заздалегідь визначеного рівня потужності ФЕ. У тому випадку, коли потужність ФЕ менше заздалегідь визначеного порогу, енергія накопичується в батареях акумуляторів, що буде використано в часи пікового попиту на енергію. В іншому випадку ФЕ продовжує живити основну мережу. Новизна запропонованої роботи полягає в новому алгоритмі (розумному алгоритмі), здатному визначити найбільш підходящі (оптимальні) години для перемикання між акумулятором, сонячними ФЕ та основною мережею на основі даних про історію споживання, а також визначити оптимальну величину енергії накопичення, що вводиться під час пікового попиту. Методи. Розв‘язання задачі було реалізовано на платформі Matlab R2010a, а моделювання проведено на ноутбуці з процесором 2,5 ГГц та 4 ГБ оперативної пам'яті. Результати. Результати моделювання показують, що запропонована модель найоптимальніше планує час увімкнення/вимкнення вимикача, що призводить до абсолютного контролю потужності шляху електроенергії, тобто точної адаптації на піку без шкоди для комфорту споживачів. Крім того, з розробленої схеми можна безпосередньо отримати інші корисні результати. Таким чином, результати підтверджують перевагу запропонованої стратегії порівняно з іншими вдосконаленими методами
Improved power computation method for droop‐controlled single‐phase VSIs in standalone microgrid considering non‐linear loads
Computation of active and reactive powers is a crucial step in droop-controlled single-phase voltage source inverters (VSIs) in standalone microgrid since the performance and stability of the power-sharing strategy are strongly influenced by its speed and accuracy, especially in the case of non-linear loads. Here, an improved performance of power-sharing among single-phase droop-controlled VSIs in an islanded microgrid, considering DC component and nonlinear loads is presented. To achieve this goal, an enhanced power-sharing control scheme including a Multiple Enhanced Second-Order Generalized Integrator Frequency-Locked Loop (MESOGI-FLL) for power calculation is proposed. As a result, the proposed power computation technique provides high rejection capability of DC component and current harmonics, hence, perfect estimation of the fundamental component of the inverter output current and its 90◦ phase-shifted component. This strategy makes the power calculation method-based control scheme immune to disturbance effects of the DC component and the high current harmonics. Detailed analysis, mathematical modelling of MESOGI, as well as a comparison with recent methods, are also provided. Simulation and experimental tests were carried out and the obtained results have shown the effectiveness and robustness of the proposed power-sharing controller even under nonlinear load operating conditions
Design and analysis of virtual impedance control scheme based on MESOGI for improving harmonic sharing of nonlinear loads
Under the presence of nonlinear load, the most existing virtual impedance (VI) methods-based control solution performs poorly in reactive power sharing among droop-operated VSIs in microgrids (MGs). This may be due to the involved estimation techniques for extracting the current harmonics at selected frequencies, which suffer from either poor accuracy of the harmonic estimation and/or the effect of DC offset in the measurements. Such an issue may affect the performance of the virtual impedance control, hence, the system stability. To bridge this gap, the implementation of the virtual impedance based on multiple enhanced second-order generalized integrator (MESOGI) suitable for harmonics and DC-offset estimation/rejection, is proposed in this paper. The MESOGI can offer an accurate estimation of the current quadrature components free from DC offset at selected frequencies, required to implement the virtual impedance control. Therefore, it makes the designed virtual impedance-based control scheme robust to voltage distortions, immune to DC disturbance, and capable of sharing properly the power harmonics. As a result, this may contribute to improving the reactive and harmonic power-sharing between droop-controlled VSIs within an islanded MG. The modeling of the MESOGI scheme and its performance investigation is carried out. In addition, the mathematical model of the implemented virtual impedance is derived. Further, analysis based on the obtained model of the equivalent output impedance including virtual impedance is established to study its effect. Simulation and experimental tests are performed to prove the effectiveness of the control proposal in improving the reactive power sharing under nonlinear load operating conditions
Deployment of AI-based RBF network for photovoltaics fault detection procedure
In this paper, a fault detection algorithm for photovoltaic systems based on artificial neural networks (ANN) is proposed. Although, a rich amount of research is available in the field of PV fault detection using ANN, this paper presents a novel methodology based on only two inputs for the training, validating and testing of the Radial Basis Function (RBF) network achieving unprecedented detection accuracy of 98.1%. The proposed methodology goes beyond data normalisation and implements a ‘mapping of inputs’ approach to the data set before exposing it to the network for training. The accuracy of the proposed network is further endorsed through testing of the network in partial shading and overcast conditions
Automatic supervision and fault detection of PV systems based on power losses analysis
Study of bypass diodes configuration on PV modules
A procedure of simulation and modelling solar cells and PV modules, working partially shadowed in Pspice environment, is presented. Simulation results have been contrasted with real measured data from a commercial PV module of 209Â Wp from Siliken. Some cases of study are presented as application examples of this simulation methodology, showing its potential on the design of bypass diodes configuration to include in a PV module and also on the study of PV generators working in partial shading conditions.Bypass diodes Hot spot Modelling Simulation PV modules
New algorithm for energy dispatch scheduling of grid-connected solar photovoltaic system with battery storage system
Purpose. In last decade the problem of energy management system (EMS) for electric network has received special attention from academic researchers and electricity companies. In this paper, a new algorithm for EMS of a photovoltaic (PV) grid connected system, combined to an storage system is proposed for reducing the character of intermittence of PVs power which infect the stability of electric grid. In simulation model, the PV system and the energy storage system are connected to the same DC bus, whereas EMS controls the power flow from the PV generator to the grid based on the predetermined level of PV power. In the case where the PV power is less than the predefined threshold, energy is stored in the batteries banc which will be employed in the peak energy demand (PED) times. Otherwise, it continues to feed the principal grid. The novelty of the proposed work lies in a new algorithm (smart algorithm) able to determine the most suitable (optimal) hours to switching between battery, Solar PVs, and principal grid based on historical consumption data and also determine the optimal amount of storage energy that be injected during the peak demand. Methods. The solution of the problem was implemented in the Matlab R2010a Platform and the simulation conducted on Laptop with a 2.5 GHz processor and 4 GB RAM. Results. Simulation results show that the proposed model schedules the time ON/OFF of the switch in the most optimal way, resulting in absolute control of power electric path, i.e. precise adaptation at the peak without compromising consumers comfort. In addition, other useful results can be directly obtained from the developed scheme. Thus, the results confirm the superiority of the proposed strategy compared to other improved techniques.</jats:p
