693 research outputs found

    Room temperature magneto-optic effect in silicon light-emitting diodes

    Get PDF
    In weakly spin-orbit coupled materials, the spin-selective nature of recombination can give rise to large magnetic-field effects, for example on electro-luminescence from molecular semiconductors. While silicon has weak spin-orbit coupling, observing spin-dependent recombination through magneto-electroluminescence is challenging due to the inefficiency of emission due to silicon's indirect band-gap, and to the difficulty in separating spin-dependent phenomena from classical magneto-resistance effects. Here we overcome these challenges to measure magneto-electroluminescence in silicon light-emitting diodes fabricated via gas immersion laser doping. These devices allow us to achieve efficient emission while retaining a well-defined geometry thus suppressing classical magnetoresistance effects to a few percent. We find that electroluminescence can be enhanced by up to 300\% near room temperature in a seven Tesla magnetic field showing that the control of the spin degree of freedom can have a strong impact on the efficiency of silicon LEDs

    Functional Principal components direction to cluster earthquake waveforms

    Get PDF
    Looking for curves similarity could be a complex issue characterized by subjective choices related to continuous transformations of observed discrete data (Chiodi, 1989). In this paper we combine the aim of finding clusters from a set of individual curves to the functional nature of data, applying a variant of a k-means algorithm based on the principal component rotation of data. We apply a classical clustering method to rotated data, according to the direction of maximum variance. A k-means clustering algorithm based on PCA rotation of data is proposed, as an alternative to methods that require previous interpolation of data based on splines or linear fitting (Garc´ıa- Escudero and Gordaliza (2005), Tarpey (2007), Sangalli et al. (2008)

    Effects of surface forcing on the seasonal cycle of the eastern equatorial Pacific

    Get PDF
    The roles of zonal and meridional wind stress and of surface heat flux in the seasonal cycle of sea surface temperature (SST) are examined with a primitive equation (PE) model of the tropical Pacific Ocean. While a variety of previous numerical and observational studies have examined the seasonal cycle of SST in the eastern tropical Pacific, it is noteworthy that different mechanisms have been invoked as primary in each case and different conclusions have been reached regarding the relative importance of the various components of surface forcing. Here, we perform a series of numerical experiments in which different components of the surface forcing are eliminated and the resulting upper ocean variability is compared with that of the climatological experiment. The model used for these experiments reproduces a realistic climatological seasonal cycle, in which SST emerges as an independent quantity. We find that the different cases all produce qualitatively reasonable seasonal cycles of SST, though only the most complete model is also able to reproduce the seasonal cycle of near surface currents, tropical instability waves (TIWs), and net surface heat fluxes consistent with historical observations. These results indicate that simply reproducing a qualitatively accurate seasonal cycle of SST does not necessarily allow meaningful conclusions to be made about the relative importance of the different components of surface forcing. The results described here also suggest that a model simulation must at least reproduce all the documented near surface kinematic features of the equatorial Pacific cold tongue region reasonably well, before accurate inferences can be made from model experiments. This provides useful guidelines to current efforts to develop and evaluate more complex fully coupled air-sea models and shows that results for simple or intermediate ocean models that do not have this level of fidelity to the observations will be difficult to interpret

    Financial contagion through space-time point processes

    Get PDF
    We propose to study the dynamics of financial contagion by means of a class of point process models employed in the modeling of seismic contagion. The proposal extends network models, recently introduced to model financial contagion, in a space-time point process perspective. The extension helps to improve the assessment of credit risk of an institution, taking into account contagion spillover effects

    Silicon Superconducting Quantum Interference Device

    Full text link
    We have studied a Superconducting Quantum Interference SQUID device made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the Gas Immersion Laser Doping (GILD) technique. The SQUID device is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.Comment: Published in Applied Physics Letters (August 2015

    High-speed data transfer with FPGAs and QSFP+ modules

    Full text link
    We present test results and characterization of a data transmission system based on a last generation FPGA and a commercial QSFP+ (Quad Small Form Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver available in copper or optical cable assemblies for an aggregated bandwidth of up to 40 Gbps. We implemented a complete testbench based on a commercial development card mounting an Altera Stratix IV FPGA with 24 serial transceivers at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We present test results and signal integrity measurements up to an aggregated bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation proceedings of Topical Workshop on Electronics for Particle Physics 2010, 20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019

    The ATLAS barrel level-1 Muon Trigger Sector-Logic/RX off-detector trigger and acquisition board

    Get PDF
    The ATLAS experiment uses a system of three concentric layers of Resistive Plate Chambers (RPC) detector for the Level-1 Muon Trigger in the air-core barrel toroid region. The trigger algorithm looks for hit coincidences within different detector layers inside the programmable geometrical road which defines the transverse momentum cut. The on-detector electronics that provides the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Trigger and readout data are then sent via optical fibres to the off-detector electronics. Six or seven optical fibres from one of the 64 trigger sectors go to one Sector-Logic/RX module, that later elaborates the collected trigger and readout data, and sends data respectively to the Read-Out Driver modules and to the Central Level-1 Trigger. We present the functionality and the implementation of the VME Sector-Logic/RX module, and the configuration of the system for the first cosmic ray data collected using this module

    Proximity DC squids in the long junction limit

    Full text link
    We report the design and measurement of Superconducting/normal/superconducting (SNS) proximity DC squids in the long junction limit, i.e. superconducting loops interrupted by two normal metal wires roughly a micrometer long. Thanks to the clean interface between the metals, at low temperature a large supercurrent flows through the device. The dc squid-like geometry leads to an almost complete periodic modulation of the critical current through the device by a magnetic flux, with a flux periodicity of a flux quantum h/2e through the SNS loop. In addition, we examine the entire field dependence, notably the low and high field dependence of the maximum switching current. In contrast with the well-known Fraunhoffer-type oscillations typical of short wide junctions, we find a monotonous gaussian extinction of the critical current at high field. As shown in [15], this monotonous dependence is typical of long and narrow diffusive junctions. We also find in some cases a puzzling reentrance at low field. In contrast, the temperature dependence of the critical current is well described by the proximity effect theory, as found by Dubos {\it et al.} [16] on SNS wires in the long junction limit. The switching current distributions and hysteretic IV curves also suggest interesting dynamics of long SNS junctions with an important role played by the diffusion time across the junction.Comment: 12 pages, 16 figure

    Supra-oscillatory critical temperature dependence of Nb-Ho bilayers

    Full text link
    We investigate the critical temperature Tc of a thin s-wave superconductor (Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function of the Ho layer thickness, we observe multiple oscillations of Tc superimposed on a slow decay, that we attribute to the influence of the Ho on the Nb proximity effect. Because of Ho inhomogeneous magnetization, singlet and triplet pair correlations are present in the bilayers. We take both into consideration when solving the self consistent Bogoliubov-de Gennes equations, and we observe a reasonable agreement. We also observe non-trivial transitions into the superconducting state, the zero resistance state being attained after two successive transitions which appear to be associated with the magnetic structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5 figure
    • …
    corecore