
ORIGINAL PAPER

Financial contagion through space-time point processes

Giada Adelfio1 • Arianna Agosto2 • Marcello Chiodi1 • Paolo Giudici2

Accepted: 1 July 2020
� The Author(s) 2020

Abstract
We propose to study the dynamics of financial contagion by means of a class of

point process models employed in the modeling of seismic contagion. The proposal

extends network models, recently introduced to model financial contagion, in a

space-time point process perspective. The extension helps to improve the assess-

ment of credit risk of an institution, taking into account contagion spillover effects.
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1 Introduction

The global financial crisis has led to an increasing research literature on systemic

risk, with different definitions and measurement models.

According to the European Central Bank, ‘‘Systemic risk is the risk of

experiencing a strong systemic event, which adversely affects a number of

systemically important intermediaries or markets’’. This definition introduces two

key elements for the study of systemic risk: first, a trigger event, transmitted to the

system as a whole, and not only to individual institutions; second, financial

contagion, which is spread from each financial institution to another, in a high-order

‘‘domino’’ effect.

While systemic risk definitions share this broad view, systemic risk models are

still quite divergent. For an introduction and a review see, for instance, Allen and

Carletti (2006) and Jorion and Zhang (2009).
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Econometric measures of systemic risk have been proposed in particular by

Adrian and Brunnermeier (2011), Acharya et al. (2012) and Brownlees and Engle

(2012). On the basis of market share prices, these authors consider systemic risk as

determined in the market, and calculate the quantiles of the estimated loss

probability distribution of a financial institution, conditional on an extreme event in

the financial market (or vice-versa). This approach is useful to establish policy

thresholds aimed, in particular, at identifying the most systemic financial

institutions. However, it is a bivariate approach, which allows to calculate the

risk of an institution conditional on a reference market but which does not address

the issue of how risks are transmitted between different institutions, in a

multivariate framework.

A different stream of research considers systemic risks as exogenous, explained

by causal factors. This is the approach proposed, in particular, by Ang and Longstaff

(2012) and Betz et al. (2014), who explain whether the default probability of an

institution depends on a set of exogenous risk sources. While powerful from an early

warning perspective, causal models, similarly to bivariate ones, concentrate on

single institutions rather than on the economic system as a whole and, therefore,

may underestimate systemic sources of risk arising from contagion effects within

the system.

Trying to address the multivariate nature of systemic risk, researchers have

recently proposed financial network models, able to combine the rich structure of

networks [see, e.g. Lorenz et al. (2009) and Battiston et al. (2012)] with a more

parsimonious approach that can estimate contagion effects from the dependence

structure among market prices. Seminal contributions in this framework are Billio

et al. (2012) and Diebold and Yilmaz (2014), who derive contagion measures based

on Granger-causality tests and variance decompositions. Recently, Ahelegbey et al.

(2015) and Giudici and Spelta (2016) extended this methodology introducing

correlation network models.

While bivariate and causal models explain how the risk of an institution is

affected by the market, or by exogeneous risk factors, correlation network models

explain whether the same risk depends on endogenous contagion effects, in a cross-

sectional perspective. While bivariate and causal models can signal when a crisis

could happen, on the basis of the exogeneous triggers, but do not describe how that

crisis is transmitted, correlation network models are not predictive, but can describe

how a crisis, once triggered, is transmitted through the whole system.

Our aim is to improve financial network models, allowing them to be a predictive

and not only a descriptive measure of systemic risk. To this aim, we employ point

process models that combine the space dimension, characteristic of cross-sectional

models, with a time dimension. Doing so, we contribute to the financial networks

literature, extending systemic risk models with a new model, based on point

processes, that takes both time and space dynamics into account.

A point process is a random collection of points, each representing the time and

space coordinates of a single event. Point processes are widely used to describe

observed patterns in different fields, such as the locations of infected patients in

epidemiology, the positions of human settlements in geography, and the epicentres
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of earthquakes in seismology: for a review see, for example, Diggle (1983), Ripley

(1977) and Schabenberger and Gotway (2005).

In all the above situations, the main research issue is to establish whether the

points exhibit complete spatial randomness, so that they can be taken as realisations

of a simple Poisson process, or if they are characterised by space-time aggregation.

The aggregation may be due to the clustering of the points around a stochastic

process, which leads to a strong interaction among points themselves.

To model events that are clustered together, self-exciting point processes, such as

the Hawkes model (Hawkes and Adamopoulos 1973) or the Epidemic Type

Aftershock Sequence (ETAS) model (Ogata 1988) have been proposed in the

literature. These models are largely used to describe phenomena for which the

occurrence of an event increases the probability of occurrence of other events, close

in time and/or space.

In finance, while Hawkes type models are already in use, as discussed in

Bauwens and Hautsch (2009), ETAS models are much less known. In this paper we

propose to customise ETAS models to understand financial contagion. In seismic

applications, the occurrence of an earthquake shock increases the likelihood of other

shocks, in the close regions. In our financial context, the occurrence of ‘‘a shock’’ on

a financial institution increases the likelihood of other shocks, in the ‘‘close’’

institutions.

We aim to extend and adapt ETAS models to the financial context. This involves

two main methodological challenges: (i) to provide a definition of what a financial

shock mean, and a related measure, that can mimick the well known magnitude

scale employed for earthquakes; (ii) to provide an adequate measure of distance

between institutions that can mimick the physical distance.

We contribute to the methodological literature on ETAS models addressing the

above challenges.

To solve (i) we propose, to employ, as a measure of financial shock on an

institution, the occurrence that the market price of its Credit Default Swap (CDS)

exceeds an extreme threshold, defined by the overall Value at Risk. We remark that

a CDS expresses which premium is priced by financial markets to insure the

investors against the default risk of an institution. It is therefore an ‘‘objective’’ way

to measure the occurrence of a financial shock on an institution. Assuming that the

market correctly prices the overall credit risk of an institution, by means of the risk

premium implicit in the CDS price, we will try to separate, in such risk premium,

the idiosyncratic component, due to the individual characteristics of an institution,

from the systemic component, due to contagion from the other institutions. Doing

so, the importance of each institution will depend not only on its position, as in most

financial network models, but also on its risk magnitude (expressed by the CDS

price) and on the risk magnitude of its neighbours.

To solve (ii) we propose to employ a multidimensional scaling technique on the

observed vector of CDS prices of each institution. According to the efficient market

assumption, financial market prices are expected to contain all relevant information

on the underlying institutions. By comparing the time series of CDS prices, we can

get a measure of the perceived distance in credit risk between institutions, along T

time points. We propose to project such distance on a two dimensional space, which
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can be visualised and better understood than a T dimensional space. Multidimen-

sional scaling allows to minimize the difference between the original distances and

those expressed in the two dimensional space.

To summarise, our paper contains both a methodological contribution, that

allows the extension of ETAS models to the financial context; and an applied

contribution, as it extends financial network models in a predictive context.

The paper is organised as follows: in Sect. 2 we present the ETAS model that we

propose to model financial contagion. In Sect. 3 we present the application of the

model to real data that concern the largest European financial institutions. Some

concluding remarks follow in Sect. 4.

2 Methodology

Let Z ¼ T � S be a general space-time closed region, with T the time domain and S
a two-dimensional space. For a generic point z ¼ ðt; sÞ of Z, the conditional
intensity function (Daley and Vere-Jones 2003) is the expected frequency of events

in a space-time unit region, conditional on the history Ht of the point process up to

time t, that is:

kðzÞ ¼ kðt; sjHtÞ ¼ lim
LðDtÞ;LðDsÞ!0

E Nð½t; t þ Dt� � ½s; sþ Ds�ÞjHt½ �
LðDtÞLðDsÞ

where LðxÞ is the Lebesgue measure of x, and Dt;Ds are time and space increments

respectively.

Conditional intensities kðzÞ are usually made dependent on some unknown

parameters.

The parametric conditional intensity function of a branching model in a point

ðt; sÞ can be defined as the sum of a term that describes the long-term variation

(spontaneous activity or background) and a term that describes the short-term

variation (induced activity or offsprings):

kwðt; sjHtÞ ¼ lf ðsÞ þ
X

tj\t

mhðt � tj; s� sjÞ ð1Þ

with w ¼ ðh; lÞ0, the unknown parameters, describing short-term variation (h) and

long term variation (l), with f ðsÞ and
P

tj\t mhð�Þ the corresponding density

functions.

Given i ¼ 1; . . .; n events, the spatial-temporal observations for each of them are

the occurrence time ti, the geographical coordinates si ¼ ðxi; yiÞ and the magnitude

mi, which represents the marker of the Point Process (Daley and Vere-Jones 2003).

To jointly model all these observations, the ETAS specification is based on a

parametric conditional intensity function that can be written as follows:

kwðt; sjHtÞ ¼ lf ðsÞ þ
X

tj\t

gðt � tjjmjÞ‘ðx� xj; y� yjÞ ð2Þ

where mj is the magnitude of the j-th inducing event. Note that in the ETAS model
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the short term component of the space-time point process is obtained as the product

of a time intensity and a spatial intensity.

The long-term background component is instead usually assumed to have an

intensity that is stationary in time (l), but inhomogeneous in space (f ð�Þ).
The time occurrence rate of aftershocks at time t, following an event of time tj of

magnitude mj, is then described by the following parametric density:

gðt � tjjmjÞ ¼
j0 eðaÞ ðmj�m0Þ

ðt � tj þ cÞp ; with t[ tj ð3Þ

where m0 is the completeness magnitude threshold, that is, the lower bound above

which events are recorded; j0 is a constant which measures aftershocks produc-
tivity; c and p are parameters of the modified Omori’s law (Utsu 1961), with

p indicating the decay rate of aftershocks in time.

Finally, the spatial rate of the ETAS model is usually described by the following

density:

‘ðx� xj; y� yjÞ ¼ a ðx� xjÞ2 þ ðy� yjÞ2 þ d
n o�q

ð4Þ

which relates the occurrence rate of aftershocks to the magnitude mj, through a

parameter a that measures the influence of each sequence, and the parameters d and

q which are related to related to the spatial influence of the shocks.

To estimate the parameters of the ETAS model, with the available event data, a

main issue is the simultaneous estimate of all the different components of the

intensity function. If the long-term density component lf ðsÞ in (2) is known, the

remaining parameters ðj0; c; p; a; d; qÞ can be estimated by the Maximum Likeli-

hood method, using computationally intensive numerical techniques (Ogata 1998).

In particular, a procedure to maximize the log likelihood function, based on the

expectation-maximization algorithm, was introduced in Veen and Schoenberg

(2008). Otherwise, when the long-term spatial component lf ðsÞ in Eq. (2) is

unknown, it can be obtained through kernel density estimators, using appropriate

smoothing constant bandwidths (Silverman 1986).

We now introduce a method aimed at estimating the parameters of the ETAS

model in the financial contagion context.

For this purpose, we assume that the intensity function kð�Þ of a space-time point

process, observed in the space region S and in the time interval ðT0; TmaxÞ, depends

on a set of parameters w. Let also k̂w;Htk
ð�Þ indicate a generic estimator of kð�Þ, based

on observations until tk.
Given a set of k observed values zi, the log likelihood for the ETAS process,

calculated in k̂w;Htk
ð�Þ, becomes:

log Lðk̂w;Htk
ðzÞ;HtkÞ ¼

Xk

i¼1

log k̂w;Htk
ðziÞ �

Z Tmax

T0

Z

S

k̂w;Htk
ðzÞ ds dt ð5Þ

We remark that the above likelihood cannot be obtained when the long term spatial

component lf ðsÞ in Eq. (2) is unknown. To solve this problem we may estimate it
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by means of non-parametric methods, such as kernel density, using a vector of

smoothing parameters, representing window sizes. However, by doing so, the

maximisation of the log likelihood of the point process is reached when window

sizes tend to zero and the estimated intensities put mass only on the observed points,

providing a useless result. To overcome this problem, we propose to employ the

Forward Likelihood-Based (FLP) method developed in Chiodi and Adelfio (2011)

and Adelfio and Chiodi (2015), which is based on the idea of maximising the sum of

increments of the likelihood, obtained adding an observation at the time, to pro-

gressively take past information into account. The resulting approach, named

ETAS-FLP, consists of a simultaneous estimation of the non-parametric and para-

metric components of the ETAS model, alternating standard likelihood methods (to

estimate the parameters of the short-term component) with the FLP approach (to

estimate the long-term component).

The new estimation strategy can be formally defined as follows. Let

log Lðk̂w;Htk
ðzÞ;Htkþ1

Þ be the log likelihood computed on the first k þ 1 observations,

applying the estimator k̂w;Htk
ðzÞ on the previous k observations.

The predictive information content of the first k observations on the k þ 1th is

then defined as:

dk;kþ1ðwÞ ¼ log Lðk̂w;Htk
ðzÞ;Htkþ1

Þ � log Lðk̂w;Htk
ðzÞ;HtkÞ

Note that this expression resembles an objective function used in out-of-sample

cross-validation, but only applied to the immediately next observation.

Parameter estimates are finally obtained choosing ewðHtkÞ which maximises:

FLPk1;k2
ðŵÞ �

Xk2

k¼k1

dk;kþ1 ð6Þ

with the constants k1 and k2 to be appropriately chosen. In our applications we set,

without loss of generality, k1 ¼ n
2

� �
and k2 ¼ n� 1.

Chiodi and Adelfio (2011) showed that the above FLP procedure provides lower

estimation errors of space-time intensity functions with respect to classical methods.

Adelfio and Chiodi (2015) interpreted the FLP measure as a martingale and

provided a proof of the asymptotic existence and uniqueness of the solution. They

also showed applying the procedure to seismic contagion leads to rather

stable results. To allow further testing and reproducibility of the methodology,

the same authors implemented the algorithm in the R package etasFLP (Chiodi

and Adelfio 2017).

The specific contribution of this paper is the extension of the ETAS-FLP

approach, developed for the study of contagion effects of seismic shocks, to the

study of contagion effects of financial shocks. To achieve this goal, we need to:

(a) define a ‘response’ variable which defines and measures the magnitude of a

financial shock; (b) replace ‘physical’ spatial coordinates, used in the seismic

literature to measure contagion effects of seismic shocks, with ‘financial’ spatial

coordinates that can measure contagion effects of financial shocks.
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Addressing these two issues is the main methodological novelty of this paper.

Concerning point a), we assume that corporate default swap (CDS) prices can be

used to measure the magnitude of a financial shock. This seems reasonable, since

CDS spreads correspond to the insurance premium that the market is willing to pay

to insure against the default of the corresponding institution.

While the magnitude of a seismic shock is measured by the physical losses that

materialise in a set of geographical sites, hit by an earthquake, the magnitude of a

financial shock can be measured by the monetary losses incurred by investors in a

set of specific institutions, hit by a crisis. While seismic losses are estimated through

expert assessments, financial losses are estimated by the financial markets and are

incorporated in market prices, such as CDS spreads.

The evolution of an earthquake is observed through a sequence of seismic

shocks, correlated in time and space; similarly, we assume that the evolution of a

financial crisis is observed through a sequence of CDS price variations, correlated in

time and space. By assuming that the process defined by Eq. (2) is also suitable to

describe contagion effects in the financial context, we can model the interconnection

among different institutions, accounting for both long-term and short-term

dependence.

Concerning issue b), a key challenge for extending the ETAS model from seismic

to financial contagion is to get appropriate ‘financial’ spatial coordinates to replace

the geographical ones. To this aim, in Sect. 3 we apply the multidimensional scaling

approach [see, for instance, Torgerson (1958); Cox (2001) and Gower (1966)]

which allows to define reference coordinates for the available corporate institutions

in a low dimensional space, which, for simplicity and without loss of generality, will

be chosen as bidimensional. In such a space, the distances between any two

institutions will be proportional to the distance between the vectors of their observed

CDS prices, along the whole considered time period. This way, we define an

‘endogenous’ system of coordinates that reproduces, in a bidimensional space, the

distance between corporates estimated by the financial markets through the daily

CDS prices.

Both in the seismic and in the financial context, statistical models provide useful

tools not only related to the ‘description’ of the events, but also to the development

of ‘early warning’ indicators of distress. To this aim, we need to further extend the

ETAS-FLP procedure, making it able to provide predictions of the future CDS

prices. This extension can be summarised by the following pseudo-code:

• Start from the estimated ETAS model, based on the FLP estimation using data

up to time t.
• Forecast the intensity of the following day, that is, compute the intensity at time

t þ dt, conditional on the history up to t, k̂w;Ht
ðt þ dt; sÞ (in our context dt is one

day).

• Re-estimate the model based on the predicted intensity and repeat the steps for a

period of n days.

A further extension is based on the following remark. To improve prediction for

events occurring in the time interval t þ dt, we should account for the effect of the
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events that may occur meanwhile, conditionally on the history up to Htþdt. In other

words, we should consider the conditional intensity function kwð�jHtþdtÞ, such that:

kwðt þ dtjHtþdtÞ ¼ kwðt þ dtjHtÞProbðNðdtÞ ¼ 0Þ
þ ½kwðt þ dtjHtÞ þ gðdtÞ�ProbðNðdtÞ[ 0Þ
� kwðt þ dtjHtÞ þ gðdtÞkwðt þ dtjHtÞ

with gð�Þ defined as in Eq. (3).

Then, to predict the number of events in t þ dt, we should consider the integral

with respect to time:

Z 1

0

kwðt þ dtjHtÞdt þ
Z 1

0

gðdtÞkwðt þ dtjHtÞdt

The first part of the sum above describes the predicted number of events in t þ dt
conditionally to the history up to t, while the second part represents an additional

effect due to the events that may occur between t and dt.
In Sect. 3, we derive predictions that include the previous ‘additional’

component, showing that it can indeed further improve prediction accuracy.

With the aim of highlighting the contribution of our approach, the predictions

obtained by the ETAS model in the empirical application (Sect. 3) will be compared

with those computed through a more traditional count model, that is a Poisson

model applied to the event count time series. In particular, we consider the so-called

Poisson Autoregression (PAR), whose properties and inference theory were studied

by Fokianos et al. (2009). Because of its capability of capturing overdispersion and

long memory effects in count time series, an extension of PAR was indeed applied

by Agosto et al. (2016) to model the empirically found clustering in the time series

of default counts.

The PAR model assumes that a count time series yt, conditional on its past,

follows a Poisson distribution with a linear autoregressive intensity kt [ 0:

ytjF t�1 �Poisson ktð Þ , P yt ¼ yjF t�1ð Þ ¼ kyt exp �ktð Þ
y!

kt ¼ xþ ayt�1 þ bkt�1

ð7Þ

with x; a; b[ 0. Fokianos et al. (2009) showed that, under certain conditions

ensuring ergodicity of the process, model (7) can be consistently estimated through

a maximum likelihood approach.

3 Application

We consider corporate default swap (CDS) spread data, for a total of 108,316

observations, from 01/01/2008 to 31/12/2015, obtained from the 5 years CDS time

series of the Bloomberg database. Each observation describes the daily CDS spread

of 54 European financial corporations (bank and insurance companies), belonging to

11 different countries.
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We first need a valid definition of what is a ‘‘financial shock’’, identified by time

and space coordinates and by some kind of marker that can correspond to the

magnitude of an earthquake in the seismic context.

To this aim, we consider DCDSðtÞ, the relative time difference between two

consecutive CDS spreads (the CDS return). We then define a shock event to occur at

time t if DCDSðtÞ exceeds a fixed threshold: the 99th percentile of the observed return

distribution of all CDS returns. This identifies a total of 1,084 events, characterised

by a time point and a magnitude defined by the corresponding CDS spread.

We then need to define a notion of ‘‘distance’’ between the considered financial

companies, that can mimick the spatial distance between earthquake locations. To

this aim, we propose to apply a multidimensional scaling (MDS) projection

(Torgerson 1958; Cox 2001) for the 54 vectors that contain the 8-years long CDS

time series of the considered financial corporations.

Multidimensional scaling methods can approximate multivariate distances

among pairs of observations as distances between the corresponding points in a

lower p-dimensional space. Starting from a n� n distance matrix, MDS returns an

n� p configuration matrix, whose rows are the coordinates of the n points in a p-

dimensional space for some p\n (Mardia et al. 1979). Here we set p ¼ 2. This

choice does not only ease the interpretation, but also allows to capture most of the

data variability. Table 2 in appendix supplementary material shows indeed that the

first two coordinates explain a very large part of the CDS price variance, higher than

95% in all considered years.

In our context, we compute the Euclidean distances between the considered 54

financial corporates, using all their observed CDS daily spreads in the period

2008-2015. Through the MDS projection, we get a set of points such that the

distances between them, in a bidimensional space, are approximately equal to their

original distances.

Doing so we have a complete description of each observation, in terms of

magnitude, time, and space location, which can be used in input to the ETAS model.

Figure 1 contains the temporal distribution of the events as well as their spatial

representation, obtained from the multidimensional scaling projection. In the

temporal distribution, event times, which are discrete by nature, are randomly

moved by a very small amount to avoid visual overlapping.

From Fig. 1 (left) note, as expected, the clustering of many events at the burst of

the 2008 financial crisis, with the maximum peak observed on September 15th,

2008. Besides this spike, many other critical events occurred in March 2008, May

2010, June 2012 and June 2014.

From Fig. 1 (right) note that the spatial distribution obtained from the MDS

projection individuates three main clusters of the considered 54 financial corporates:

the largest one, on the left, contains corporates of the countries identified, during the

crisis, as ‘‘core’’ European countries (France, Germany, Netherlands, Nordic

countries). Moving along the first coordinate, we observe corporates from Italy,

Spain, Portugal and Ireland: the countries identified as ‘‘peripheral’’ countries. Last,

on the right of the figure, we can observe a small cluster of financial companies from

Greece, the country identified as the ‘‘most peripheral’’ one. Finally, Piraeus Bank,
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also from Greece, for which CDS trading was even suspended, due to its very

negative values, appears isolated in the bottom right part of the figure.

Overall, the spatial representation provided by Fig. 1(right) corresponds to the

classification of the European countries into ‘‘core’’ and ‘‘peripheral’’, particularly

during the financial crisis, and is consistent with what employed in the financial

literature.

It is worth noticing that this representation could change if considering

subsamples of the CDS price time series, rather than the full 8-year sample. To

give an insight of the evolution of the spatial representation over the analyzed

period, in the appendix supplementary material (Table 3) we report the correlation

matrix of the distances calculated in different years. The correlation values show

that, after an initial instability in the first two years - corresponding to the spread of

the global financial crisis - the distances between institutions become stable.

We remark that other authors have obtained similar conclusions, finding high

stability of the distances between countries, except during strong crisis times. See,

e.g., Avdjiev et al. (2019), who employed an exogenous measure based on Bank for

International Settlements database containing capital flows between countries.

We now apply the Forward Likelihood Prediction (FLP) method to estimate the

proposed ETAS model, defined in Eq. (2). The obtained estimates for the seven

unknown parameters of the model are reported in Table 1.

From Table 1, note that l ¼ 0:005793, which indicates that a financial crisis

event occurs, on average, every 150 days. Furthermore, the estimate of j0 is

positive, which indicates that the strength (‘magnitude’) of a previous event

positively influence the subsequent offspring intensity. Comparing the values of

p and q note that the latter is higher and, therefore, since a lower value of

p correspond to a lower decay in time (rather than in space), the results establish

Fig. 1 Temporal (left) and spatial (right) distributions of crisis events occurring to European financial
corporates, 2008–2015. The temporal distribution reports, for each considered day on the x-axis, the
frequency of the crisis events, that is , the number of CDS spreads whose value exceeded the 99%
percentile, calculated on the aggregated time series. The spatial distribution represents the two
‘‘financial’’ coordinates of each of the 52 considered corporates, obtained from the application of a MDS
bidimensional projection of all the distances between the available corporates, based on all daily
observations
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that, for the considered European corporates, time contagion is more persistent than

space contagion.

In the following three subsections, we move from a descriptive to a predictive

viewpoint, applying the proposed ETAS-FLP model to make predictions, in an out-

of-sample perspective. In particular, in Sects. 3.1–3.3 we forecast crisis events using

all the CDS spread data available at the time of prediction. Coherently with previous

considerations concerning the stability of the spatial representation and to smooth

initial instabilities in the joint CDS dynamics, we use constant distances estimated

through our MDS procedure.

3.1 Predicting foreshock events

In the time distribution of events represented in Fig. 1, some peaks of intensity can

be observed. While some of them, such as the one of September 18th, 2008, appear

to be caused by previous crisis events (for which a high CDS spread value is

observed) others, such as the peak on September 15th, 2008, do not seem to be

induced by the effect of previous events and could rather be caused by external

exogenous factors.

Using the terminology used in earthquake modelling, we refer to the former as

‘aftershock’ events (typically induced by a large intensity event) and to the latter as

‘foreshock’ events (typically occurring before a large intensity event). In this

subsection we consider the prediction of foreshock events and, in the following, the

prediction of aftershock events.

Figure 2 plots the one-ahead predictions obtained with our proposed estimation

procedure, for the events occurring in the time interval around September 15th,

2008. Besides the observed event, the figure shows the predictions obtained with

and without the additional component in the conditional intensity, which takes into

account the effect of events occurring in the interval t þ dt.
Figure 2 shows that the model does not well capture the first cluster of events,

occurring on September 15th, in which as many as 40 crisis events occurr: among

Dutch, French, German, Italian, Portuguese and Spanish corporates. The observed

large number of events is clearly higher than the predicted one.

However, note that after September 18th, in which a large shock hits the Credit

Industriel CDS spread, in France (black vertical dotted line), with DCDS ¼ 1:27, the

Table 1 Estimates of the ETAS-

FLP model in Eq. 2, applied to

the available CDS data

Estimates Standard errors

l 0.005793 0.002442

j0 0.000260 0.000058

c 0.001411 0.000334

p 0.968939 0.010587

a 0.011795 0.003157

d 0.008519 0.001438

q 1.923259 0.091496
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model does improve considerably its predictions. This is likely due to the fact that

the model has acquired more data and, therefore, makes better predictions.

To better evaluate the performance of the proposed model, and to check its

validity in a more challenging exercise, we now test its predictive behaviour in a

longer, weekly, out-of-sample horizon.

Figure 3 reports the one-week-ahead predictive distribution of the events,

computed with the model that includes the additional component.
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Fig. 2 Comparison between observed and predicted frequency of events for the events of September
2008 by the ETAS-FLP approach. The predicted lines are obtained both with and without the additional
component (red and green line respectively)

days

pr
ed

ic
te

d
0

10
20

30
40

50
60

70

09/15/08 09/20/08 09/25/08 09/30/08 10/05/08 10/10/08

 09/18/08, FR, Industriel, 1.27
Observed
predicted−add

Fig. 3 Comparison between observed and predicted frequency of events by the ETAS-FLP approach with
the additional component (green line) for the events of September 2008: one week ahead predictions
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Figure 3 confirms the previous findings: the model does not predict well initially

but then, as it learns from more data, improves.

To better understand whether our model is valid, we compare its predictions with

those obtained with the PAR model defined in Eq. (7). This will allow us to verify

whether the ETAS model, that contains a spatial component, improves the

predictions with respect to a pure autoregressive model, that contains only a

temporal component. Specifically, we carry out an out-of-sample exercise, where

the observations up to 6 trading days before the September 15th default peak are

used for an initial estimation of a PAR model and 35 one-day-ahead forecasts are

computed. The estimation and prediction time intervals are chosen so to mimic the

predictive exercise represented in Fig. 2. Figure 4 shows the predictions obtained

with the PAR model.

From Fig. 4 note that the PAR model is not able to properly capture the default

events cluster. Indeed, a visual comparison with Fig. 2 shows that the autoregressive

specification underperforms the ETAS one. It follows that the proposed space-time

ETAS model is better than a pure time autoregressive one, and a spatial component

is necessary.

Having found that a spatial component is necessary, we focus the analysis on the

spatial contagion effects on the predictions. To this aim, we derive the predictive

space intensity, under two different conditioning sets. We consider the conditional

intensity at September 15th, 2008 and at September 29th, 2008. Figure 5 shows the

predictive intensities, for each spatial point, based on the data up to that time point.

In Fig. 5 (top), that refers to the conditional intensity at September 15th, we

observe a clear dependence in the spatial intensity, not only between corporates in

the same country, as expected, but also between financial corporates belonging to

neighbouring countries (such as Spain and Italy or France and Italy).

Figure 5 (bottom) refers to the conditional intensity at September 29th. We

remark that September 29th occurs some days after the ‘large shock’ in Credit

Industriel and that, on the same day, 15 events are observed: 9 among Belgian,

French, German and Dutch corporates, and 6 involving Italian, Spanish and Greek

Fig. 4 Comparison between observed and predicted frequency of events, for the event of September
2008: PAR model
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companies. Figure 5 (bottom) clearly shows that the large shock in the CDS spread

of Credit Industriel on September 18th, 2008 has increased the intensity in France

and in the neighbouring countries, leading to a substantial shift in the main kernel of

Fig. 5 Predictive spatial intensity by the ETAS-FLP approach, at September 15th, 2008 (top) and at
September 29th (bottom), measured in terms of the two MDS coordinates (latitude and longitude)
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the intensity. This is consistent with our previous finding: the model improves by

learning from shock data.

3.2 Predicting aftershock events

We now consider the prediction of ‘aftershock’ events which, presumably, are

caused endogenously, differently from ’foreshock’ events that are likely caused by

exogenous factors. In particular, we consider the shock occurring on March 7th,

2008, when a large CDS value in the French Groupama was observed

(DCDS ¼ 6:15). On that day several CDS variations exceeding the threshold were

observed: 3 in France, 6 in Italy, 3 in Spain, 1 in Greece, 4 in Germany.

Figure 6 reports the one-day-ahead predictive distribution of the events.

From Fig. 6 note that, six days after the shock (on March, 13th) five further

events occur, and they are well predicted by our model: 1 in Belgium, 1 in France, 2

in the Netherlands and 1 in Portugal. Overall, our model seem to well predict the

number of crisis events. Comparing Fig. 6 with Fig. 2, it appears that our model is

better suited to predict aftershock events, rather than foreshock events.

To further evaluate the performance of our model, we also consider one-week-

ahead predictions. Figure 7 reports the one week ahead predictive distribution of the

events.

From Fig. 7 note that the one-week-ahead predictions are worse, as expected,

than the one-day ahead predictions, but better than those relative to foreshock

events.

We then compare our one-day-ahead predictions with those obtained by the PAR

model. The latter is firstly estimated up to 3 days before the Groupama event,
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Fig. 6 Comparison between observed and predicted frequency of events for the event of March 2008 by
the ETAS-FLP approach. The predicted lines are obtained both with and without the additional
component (red and green line respectively)
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providing a one-day-ahead forecast for the following 20 days. Figure 8 shows the

obtained predictions.

Figure 8, compared with Fig. 6, shows that the PAR model does not well capture

the default peaks, where it underperforms the ETAS model. Again, the results show

that a spatial component is necessary.

As in the previous subsection, we now focus on the spatial contagion effects. We

consider data until March 7th and 13th, 2008, respectively. The corresponding

conditional intensities are represented, in Figs. 9 (top) and 9 (bottom), respectively.

Comparing the two plots in Fig. 9, note that the effect of the 2008 Groupama

event, generating the stress area in red in Fig. 8, persists a few days after in the

neighbouring region, as shown in Fig. 9 (bottom).
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Fig. 7 Comparison between observed and predicted frequency of events by the ETAS-FLP approach with
the additional component (green line) for the events in March 2008: one week ahead predictions

Fig. 8 Comparison between observed and predicted frequency of events for the event in March 2008:
PAR model
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Fig. 9 Predictive spatial intensity by the ETAS-FLP approach, at March 7th (top) and March 13th
(bottom), 2008, measured in terms of the two MDS coordinates (latitude and longitude)
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3.3 Predicting mixed events

We finally consider the prediction of ‘‘mixed’’ events, that exhibit both a

‘foreshock’ and an ‘aftershock’ component. An example of this occurrence are

the events that cluster around the event occurring to Groupama on June 7th, 2012.

For this event, we have the ‘typical’ representation of a seismic sequence:

foreshocks, mainshock and aftershocks. The mainshock is the big event on June 7th,

2012, with DCDSðtÞ ¼ 5:20, preceded by foreshocks, probably induced by external

factors not directly related to the strength of the main event, and followed by an

aftershocks sequence, that is reflected in an increase of the offspring intensity. The

one-day-ahead predictive distribution around June 7th, 2012 is reported in Fig. 10.

From Fig. 10 note that, also in this case, the proposed approach well performs in

terms of prediction, especially after the occurrence of the ‘large shock’ in the

Groupama CDS spread, which provides a noticeable gain of information.

To better evaluate the performance of our model, we consider, as before, one-

week-ahead predictions. Figure 11 reports the one week ahead predictive distribu-

tion of the events.

From Fig. 11 note that the one-week-ahead predictions are now quite well

performing, compared to the ones discussed in the previous subsections. This is

consistent with the fact that the model has been fed with sufficient shock data.

We can also compare our one-day ahead predictions with those computed with a

PAR model. Specifically, we can use observations up to 17 trading days before the

June 7th event for an initial estimation of the PAR model and, then, provide 50 one-

step-ahead forecasts. Figure 12 shows the obtained predictions.
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Fig. 10 Comparison between observed and predicted frequency of events for the event of June 2012 by
the ETAS-FLP approach. The predicted lines are obtained both with and without the additional
component (red and green line respectively)
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By comparing Fig. 12 with Fig. 10, note that the ETAS specification again

outperforms the PAR model in prediction, giving further evidence in favor of our

space-time model against a pure autoregressive model.

From a spatial contagion point of view, we can examine the spatial predicted

intensity, by looking at three conditional intensities: up to May 31st (one week before the

event), in Fig. 13 (top); up to June 7th (the day of the big event), in Fig. 13 (middle); and

up to June 28th, 2012 (twenty one days after the event), in Fig. 13 (bottom).

Comparing the three plots in Fig. 13, note that the stress activity, which emerges

before the large event of June 7th, and ‘‘erupts’’ on that day, is widely spread among

the four main clusters previously identified. However, after the event of June 7th,

the spatial intensity changes, shifting mostly to the France area (Fig. 13,middle),
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Fig. 11 Comparison between observed and predicted frequency of events by the ETAS-FLP approach
with the additional component (green line) for the days in June 2012: one week ahead predictions

Fig. 12 Comparison between observed and predicted frequency of events for the days in June 2012: PAR
model
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Fig. 13 Predicted spatial
intensity by the ETAS-FLP
approach at May 31st, 2012
(top), June 7th, 2012 (middle),
and June 28th (bottom),
measured in terms of the two
MDS coordinates (latitude and
longitude)
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with the effect persisting even twenty one days afterwards, in the same area

(Fig. 13,bottom).

4 Concluding remarks

In the paper, we have extended ETAS space-time point process, typically employed

in the study of seismic contagion, to model financial contagion. To do so we have

defined the occurrence of a financial shock by an extreme variation of the CDS

spread of a certain institution, and we have introduced a projection method aimed at

deriving ‘‘financial coordinates’’ of a set of institutions, that reproduces in a

bidimensional space the multidimensional distances between the corresponding

time series. We have also extended the ETAS-FLP estimation procedure to derive

predictions which can be employed to gauge mode accuracy.

Our empirical findings show that the proposed model takes advantage from the

spatial modelling component, as it leads to predictions more accurate than those

obtained with a pure autoregressive model. In addition, the model performs better

when the events to be predicted are aftershocks, or mixed, as more shock data are

available for the learning process.

We believe that our proposed model could be useful by policy makers, regulators

and supervisors, as an indicator of the emergence of a financial crisis in one or more

institutions, caused by contagion from other institutions. Such an indicator can be

used as an ‘‘early warning’’ signal aimed at preventing and, therefore, mitigating in

advance, the systemic consequences of financial crisis.

Future research developments include evaluating the robustness of the results, for

different spatial regions and other types of institutions, in particular sovereign

entities. This would require to extend the approach to include specific covariates,

such as the macro economic characteristics of the considered countries.

Other developments may include the application of the proposed methodology to

other types of financial risks, such as operational risks and cyber risks.
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Appendix: Supplementary material: spatial representation

This section presents the results of a robustness analysis of the spatial representation

used in the paper.

Table 2 reports the percentage of CDS price variance explained by the first two

spatial coordinates for each sample year, while Table 3 shows the correlation matrix

of the distances between institutions calculated in different years.

Table 2 Percentage of CDS

price variance explained by the

first two spatial coordinates for

each sample year

Year Explained variance

2008 0.9294

2009 1.0000

2010 0.9762

2011 0.9573

2012 0.9618

2013 0.9662

2014 0.9867

2015 0.9992

Table 3 Correlation matrix of the Euclidean distances between institutions calculated in different years

based on the CDS time series

Year 2008 2009 2010 2011 2012 2013 2014 2015

2008 1.0000 0.6889 0.1644 0.1574 0.1544 0.1520 0.1449 0.1311

2009 0.6889 1.0000 0.5577 0.5755 0.5687 0.5685 0.5619 0.5289

2010 0.1644 0.5578 1.0000 0.9461 0.8818 0.8400 0.8258 0.7646

2011 0.1574 0.5755 0.9460 1.0000 0.9832 0.9650 0.9582 0.9194

2012 0.1544 0.5687 0.8818 0.9832 1.0000 0.9918 0.9862 0.9584

2013 0.1520 0.5685 0.8400 0.9650 0.9918 1.0000 0.9985 0.9828

2014 0.1449 0.5619 0.8258 0.9582 0.9862 0.9985 1.0000 0.9854

2015 0.1311 0.5289 0.7646 0.9194 0.9584 0.9828 0.9854 1.0000
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