572 research outputs found

    Tailoring CD19xCD3-DART exposure enhances T-cells to eradication of B-cell neoplasms.

    Get PDF
    Many patients with B-cell malignancies can be successfully treated, although tumor eradication is rarely achieved. T-cell-directed killing of tumor cells using engineered T-cells or bispecific antibodies is a promising approach for the treatment of hematologic malignancies. We investigated the efficacy of CD19xCD3 DART bispecific antibody in a broad panel of human primary B-cell malignancies. The CD19xCD3 DART identified 2 distinct subsets of patients, in which the neoplastic lymphocytes were eliminated with rapid or slow kinetics. Delayed responses were always overcome by a prolonged or repeated DART exposure. Both CD4 and CD8 effector cytotoxic cells were generated, and DART-mediated killing of CD4+ cells into cytotoxic effectors required the presence of CD8+ cells. Serial exposures to DART led to the exponential expansion of CD4 + and CD8 + cells and to the sequential ablation of neoplastic cells in absence of a PD-L1-mediated exhaustion. Lastly, patient-derived neoplastic B-cells (B-Acute Lymphoblast Leukemia and Diffuse Large B Cell Lymphoma) could be proficiently eradicated in a xenograft mouse model by DART-armed cytokine induced killer (CIK) cells. Collectively, patient tailored DART exposures can result in the effective elimination of CD19 positive leukemia and B-cell lymphoma and the association of bispecific antibodies with unmatched CIK cells represents an effective modality for the treatment of CD19 positive leukemia/lymphoma

    Control of hyperglycaemia in paediatric intensive care (CHiP): study protocol.

    Get PDF
    BACKGROUND: There is increasing evidence that tight blood glucose (BG) control improves outcomes in critically ill adults. Children show similar hyperglycaemic responses to surgery or critical illness. However it is not known whether tight control will benefit children given maturational differences and different disease spectrum. METHODS/DESIGN: The study is an randomised open trial with two parallel groups to assess whether, for children undergoing intensive care in the UK aged <or= 16 years who are ventilated, have an arterial line in-situ and are receiving vasoactive support following injury, major surgery or in association with critical illness in whom it is anticipated such treatment will be required to continue for at least 12 hours, tight control will increase the numbers of days alive and free of mechanical ventilation at 30 days, and lead to improvement in a range of complications associated with intensive care treatment and be cost effective. Children in the tight control group will receive insulin by intravenous infusion titrated to maintain BG between 4 and 7.0 mmol/l. Children in the control group will be treated according to a standard current approach to BG management. Children will be followed up to determine vital status and healthcare resources usage between discharge and 12 months post-randomisation. Information regarding overall health status, global neurological outcome, attention and behavioural status will be sought from a subgroup with traumatic brain injury (TBI). A difference of 2 days in the number of ventilator-free days within the first 30 days post-randomisation is considered clinically important. Conservatively assuming a standard deviation of a week across both trial arms, a type I error of 1% (2-sided test), and allowing for non-compliance, a total sample size of 1000 patients would have 90% power to detect this difference. To detect effect differences between cardiac and non-cardiac patients, a target sample size of 1500 is required. An economic evaluation will assess whether the costs of achieving tight BG control are justified by subsequent reductions in hospitalisation costs. DISCUSSION: The relevance of tight glycaemic control in this population needs to be assessed formally before being accepted into standard practice

    The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia

    Get PDF
    The oncogenic transcription factor TAL1/SCL is aberrantly expressed in 60% of cases of human T cell acute lymphoblastic leukemia (T-ALL) and initiates T-ALL in mouse models. By performing global microRNA (miRNA) expression profiling after depletion of TAL1, together with genome-wide analysis of TAL1 occupancy by chromatin immunoprecipitation coupled to massively parallel DNA sequencing, we identified the miRNA genes directly controlled by TAL1 and its regulatory partners HEB, E2A, LMO1/2, GATA3, and RUNX1. The most dynamically regulated miRNA was miR-223, which is bound at its promoter and up-regulated by the TAL1 complex. miR-223 expression mirrors TAL1 levels during thymic development, with high expression in early thymocytes and marked down-regulation after the double-negative-2 stage of maturation. We demonstrate that aberrant miR-223 up-regulation by TAL1 is important for optimal growth of TAL1-positive T-ALL cells and that sustained expression of miR-223 partially rescues T-ALL cells after TAL1 knockdown. Overexpression of miR-223 also leads to marked down-regulation of FBXW7 protein expression, whereas knockdown of TAL1 leads to up-regulation of FBXW7 protein levels, with a marked reduction of its substrates MYC, MYB, NOTCH1, and CYCLIN E. We conclude that TAL1-mediated up-regulation of miR-223 promotes the malignant phenotype in T-ALL through repression of the FBXW7 tumor suppressor.National Cancer Institute (U.S.) (5P01CA109901)National Cancer Institute (U.S.) (5P01CA68484)National Cancer Institute (U.S.) (1K99CA157951)National Institutes of Health (U.S.). Intramural Research ProgramCenter for Cancer Research (National Cancer Institute (U.S.)

    A feature selection method for classification within functional genomics experiments based on the proportional overlapping score

    Get PDF
    Background: Microarray technology, as well as other functional genomics experiments, allow simultaneous measurements of thousands of genes within each sample. Both the prediction accuracy and interpretability of a classifier could be enhanced by performing the classification based only on selected discriminative genes. We propose a statistical method for selecting genes based on overlapping analysis of expression data across classes. This method results in a novel measure, called proportional overlapping score (POS), of a feature's relevance to a classification task.Results: We apply POS, along-with four widely used gene selection methods, to several benchmark gene expression datasets. The experimental results of classification error rates computed using the Random Forest, k Nearest Neighbor and Support Vector Machine classifiers show that POS achieves a better performance.Conclusions: A novel gene selection method, POS, is proposed. POS analyzes the expressions overlap across classes taking into account the proportions of overlapping samples. It robustly defines a mask for each gene that allows it to minimize the effect of expression outliers. The constructed masks along-with a novel gene score are exploited to produce the selected subset of genes

    Novel roles for class II Phosphoinositide 3-Kinase C2 beta in signalling pathways involved in prostate cancer cell invasion

    Get PDF
    Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2a, ß and ?) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2ß regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2ß are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2ß but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2ß and they further identify this enzyme as a key regulator of PCa cell migration and invasion

    Geochemistry in the modern soil survey program

    Get PDF
    Elemental analysis has played an important role in the characterization of soils since inception of the soil survey in the US. Recent efforts in analysis of trace and major elements (geochemistry) have provided necessary data to soil survey users in a variety of areas. The first part of this paper provides a brief overview of elemental sources, forms, mobility, and bioavailability; critical aspects important to users of soil survey geochemical data for appropriate use and interpretations. Examples are provided based on data gathered as part of the US soil survey program. The second part addresses the organization of sample collection in soil survey and how soil surveys are ideally suited as a sampling strategy for soil geochemical studies. Geochemistry is functional in characterization of soil types, determining soil processes, ecological evaluation, or issues related to soil quality and health, such as evaluating suitability of soils for urban or agricultural land use. Applications of geochemistry are on-going across the US and are documented herein. This analytical direction of soil survey complements historic efforts of the National Cooperative Soil Survey Program and addresses the increasing need of soil survey users for data that assists in understanding the influence of human activities on soil properties

    Carbon nanotubes toxicology and effects on metabolism and immunological modification in vitro and in vivo

    Get PDF
    The aim of this research is focused on the biological effects of multi wall carbon nanotubes (MWCNTs) on three different human cell types, laboratory animals in vivo, and immunological effects. Large numbers of researchers are directly involved in the handling of nanostructured materials such as MWCNTs and nanoparticles. It is important to assess the potential health risks related to their daily exposure to carbon nanotubes. The administration of sterilized nanosamples has been performed on laboratory animals, in both acute and chronic administration, and the pathological effects on the parenchymal tissues have been investigated. We studied the serum immunological modifications after intraperitoneal administration of the MWCNTs. We did not observe any antigenic reaction; the screening of ANA, anti-ENA, anti-cardiolipin, C-ANCA and P-ANCA was negative. No quantitative modification of immunoglobulins was observed, hence no modification of humoral immunity was documented. We also studied the effects of MWCNTs on the proliferation of three different cell types. MCF-7 showed a significant inhibition of proliferation for all conditions studied, whereas hSMCs demonstrated a reduction of cell growth only for the highest MWCNTs concentrations after 72 h. Also, no growth modification was observed in the Caco-2 cell line. We observed that a low quantity of MWCNTs does not provoke any inflammatory reaction. However, for future medical applications, it is important to realize prosthesis based on MWCNTs, through studying the corresponding implantation effects. Moreover, it has to be emphasized that this investigation does not address, at the moment, the carcinogenicity of MWCNTs, which requires a detailed follow-up investigation on the specific topic. In view of the subsequent and more extensive use of MWCNTs, especially in applications where carbon nanotubes are injected into the human body for drug delivery, as a contrast agent carrying entities for MRI, or as the basic material of a new prosthesis generation, more extended tests and experiments are necessary. © 2008 IOP Publishing Ltd

    HOMOGENIZATION METHOD FOR 2-D NANOSTRUCTURE REINFORCED EPOXY

    Get PDF
    Graphene\ua0 flakes\ua0 are\ua0 being\ua0 used\ua0 as base\ua0 resin additives\ua0 in\ua0 epoxy\ua0 to\ua0 improve\ua0 the\ua0 properties\ua0 of\ua0 the material\ua0\ua0 for\ua0\ua0 aerospace\ua0\ua0 applications[1].\ua0\ua0 The concentrations\ua0 of\ua0 the\ua0 flakes\ua0 should\ua0 be\ua0 optimized\ua0 to create material properties that meet the design and cost requirements\ua0\ua0 of\ua0\ua0 the\ua0\ua0 components.\ua0\ua0 A\ua0\ua0 predictive modelingapproach\ua0 is\ua0 needed\ua0 to\ua0 aid\ua0 in\ua0 the\ua0 design\ua0 of these\ua0 composite\ua0 materials\ua0 for\ua0 increased\ua0 stiffness. Using\ua0 a2D\ua0 representation, the mechanical\ua0 properties of\ua0 a\ua0 representative\ua0 area\ua0 element\ua0 of\ua0 epoxy\ua0 embedded with graphene flakes can be predicted
    corecore