A feature selection method for classification within
functional genomics experiments based on the
proportional overlapping score

Osama Mahmoud®”
*Corresponding author
Email; ofamah@essex.ac.uk

Andrew Harrisoh
Email: harry@essex.ac.uk

Aris Perperoglol
Email: aperpe@essex.ac.uk

Asma Gul
Email: agul@essex.ac.uk

Zardad Khah
Email: zkhan@essex.ac.uk

Metodi V Metodiev
Email: mmetod@essex.ac.uk

Berthold Lauseh
Email: blausen@essex.ac.uk

IDepartment of Mathematical Sciences, University of Essex, Wivenhde BO4 3SQ
Colchester, UK

2School of Biological Sciences/Proteomics Unit, University of EssexgWilive Park, CO4
3SQ Colchester, UK

3Department of Applied Statisitcs, Helwan University, Cairo, Egypt

Abstract

Background

Microarray technology, as well as other functional genomics experimelitsvy simultaneous mea
surements of thousands of genes within each sample. Both the predictiva@cand interpretability
of a classifier could be enhanced by performing the classification bagedroselected discriminative
genes. We propose a statistical method for selecting genes based lappwgy analysis of expres
sion data across classes. This method results in a novel measure, agtledipnal overlapping scor
(POS), of a feature’s relevance to a classification task.

D

Results

We apply POS, along-with four widely used gene selection methods, tcasé&esrchmark gene e
pression datasets. The experimental results of classification errocoagmited using the Random




Forest,k Nearest Neighbor and Support Vector Machine classifiers show @&tdehieves a better
performance.

Conclusions

A novel gene selection method, POS, is proposed. POS analyzes tless®ps overlap across
classes taking into account the proportions of overlapping samplesbustiyp defines a mask for
each gene that allows it to minimize the effect of expression outliers. Thetrooted masks along
with a novel gene score are exploited to produce the selected subsstas. g
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Background

Microarray technology, as well as other high-throughput functioeabgnics experiments, have become
a fundamental tool for gene expression analysis in recent years paticular classification task, mi-
croarray data are inherently noisy since most genes are irrelevaoharidrmative to the given classes
(phenotypes). A main aim of gene expression analysis is to identify geaearthexpressed differen-
tially between various classes. The problem of identification of these disetirérgenes for their use
in classification has been investigated in many studies [1-9]. Assessmmaixohally selected genes
or prognostic factors - equivalently selected by the minimum p-value agiprohave been discussed
in [10,11] using data from clinical cancer research and gene expneddhe solution is to use an appro-
priate multiple testing framework, but obtaining study or experiment optimisegaints for selected
genes make comparison with other studies and results difficult.

A major challenge is the problem of dimensionality; tens of thousands of gexg®ssions are ob-
served in a small number, tens to few hundreds, of samples. Given andihpgeanhe expression data
along-with samples’ target classes, the problem of gene selection is tarfonthethe entire dimensional
space a subspace of genes that best characterizes the respgetseatsble. Since the total number of

subspaces with dimension not higher thras > (f) whereP is the total number of genes, it is hard to

search the subspaces exhaustively [8]. Allte}natively, variouslsaahemes have been proposed e.g.,
best individual genes [9], Max-Relevance and Min-Redundansgdapproaches [8], Iteratively Sure
Independent Screening [12] and MaskedPainter approach Efjtifi¢ation of discriminative genes can
be based on different criteria including: p-values of statistical tests dagt br Wilcoxon rank sum
test [10,11]; ranking genes using statistical impurity measures e.g. infomugin, gini index and max
minority [9]; analysis of overlapping expressions across differesisela[6,7].

A way to improve prediction accuracy, as well as interpretation of the bickbgétationship between
genes and the considered clinical outcomes, is to use a supervisedadéssifbased on expressions of
discriminative genes identified by an effective gene selection technidpiepfocedure of pre-selection
of informative genes also helps in avoiding overfitting and building a fasteehiydproviding only the
features that contribute most to the considered classification task. Howesearch for the subset of
informative genes presents an additional layer of complexity in the learmowegs. In depth reviews
of feature selection methods in the microarray domain can be found in [13].



One of the differences among various feature selection procedures\gaththey perform the search
in the feature space. Three categories of feature selection method ahistihguished: wrapper,
embedded and filter methods.

Wrapper methodevaluate gene subsets using a predictive model which is run on the qatetg@&ined
into training and testing sets. Each gene subset is used with training datlaét tbe model, which is
then tested on the test set. Calculating a model prediction error from thetegvas a score for that
gene subset. The gene subset with the highest evaluation is selectediral $et on which to run this
particular model. The wrapper methods are computationally expensivetbacaeed a new model to
be fitted for each gene subset. Genetic algorithm based feature selechiniyjtes are representative
examples for wrapper methods [13].

Embedded methogerform feature selection search as part of the model constructioagzoThey are
less computationally expensive than the wrapper methods. An example dtig®ry is a classification
tree based classifier [14].

Filter methodsassess genes by calculating a relevant score for each gene. Theldgant genes are
then removed. The selected genes may then be used to serve classifizatioeny types of classi-
fiers. Gene selection filter-based methods can scale easily to high-dimrsrdadasets since they are
computationally simple and fast compared with the other approaches. Varaosples for filter-based
approaches have been proposed in earlier papers [2,3,15-17]inEjilteethods can introduce a mea-
sure for assessing importance of genes [2,15,18,19], presentdliedly which informative genes
are selected [3] or fit a statistical model to expression data in order to gé&msifdiscriminative fea-
tures [16,17]. A measure named ‘relative importance’, proposed bynidski et al. [2], is used to
assess genes and to identify informative ones based on their contributios pmocess of classifying
samples when large number of classification trees have been constriitieaontribution of a par-
ticular gene to the relative importance measure is defined by a weighted $¢aée averall number
of splits made on that gene in all constructed trees. The authors of [2lecssion tree classifiers for
measuring the genes’ relative importance, not for the aim of fitting clagsiicaules. Ultsch et al. [15]
propose an algorithm, called ‘PUL’, in which the differentially expresseweg are identified based on
a measure for retrieval information named PUL-score. Ding et al. [1&)gse a framework, named
‘minimal redundancy maximal relevance (MRMR)’ based on a series of irduti®asures of relevance,
to the response target, and redundancy, between genes being selsetial/ et al. [19] developed an
R package, named ‘mRMRe’, by which an ensemble version of mMRMR hasitmemented. The
authors of [19] use two different strategies to select multiple featuresraghier than a single set, in
order to mitigate the potential effect of the low sample-to-dimensionality ratio ostti®lity of the
results. Marczyk et al. [3] propose an adaptive filter method basedeotieitomposition of the proba-
bility density function of gene expression means or variances into a mixtugaoegsian components.
They determine thresholds to filter genes via tuning the proportion betweg@odtf®sizes of removed
and retained genes. Lu et al. [16] propose another criterion to idenéfinfarmative genes in which
principle component analysis has been used to explore the sourcesabiovain the expression data
and to filter out genes corresponding to components with less variation.n&tllal. [17] use factor
analysis models rather than principle component analysis to identify inforenggines. A comparison
between some algorithms for identifying informative genes in microarray datde found in [15,20].

Analyzing the overlap between gene expression measures for diftdasses can be another important
criterion for identifying discriminative genes which are relevant to the idemed classification task.
This strategy utilities the information given by sample classes as well as siprelata for detection of
the differentially expressed genes between target classes. A clasaifidren use these selected genes
to enhance its classification performance and prediction accuracy. okguce specifically designed
to select genes based on their overlapping degree across difftasse was recently proposed [6].



This procedure, named Painter’s feature selection method, proposeplidied version of a measure
calculating an overlapping score for each gene. For binary class sitsiatlis score estimates the
overlapping degree between both classes taking into account only doeifa., length of the interval
of overlapping expressions. It has been defined to provide higbegstor longer overlapping intervals.
Genes are then ranked in ascending order according to their scdrsssifiplified measure has been
extended by Apiletti et al. [7] using another factor, i.e. the number olapped samples, in the analysis.
The authors of [7] characterize each gene by meansgeine maskhat represents the capability of a
gene to unambiguously assign training samples to their correct classeactehaation of genes using
training sample masks with their overlapping scores allow the detection of the mingauaf genes
that provides the best classification coverage on training samples. Agknal set is then provided
by combining the minimum gene subset with the top ranked genes accordingaeettiepping score.
Since gene masks, proposed by [7], are defined based on the fahgearmaining expression intervals,
a caveat of this technique is that the construction of gene masks coulfébtedfby outliers.

Biomedical researchers may be interested in identifying small sets of genestitd be used as genetic
markers for diagnostic purposes in clinical researches. This typicalbhi@s obtaining the smallest
possible subset of genes that can still provide a good predictiverpenfce, whilst removing redundant
ones [21]. We propose a procedure serving this goal, by which the minsetiof genes is selected to
yield the best classification accuracy on a training set avoiding the effectsliers.

In this article, we propose a new gene selection method, called POS, tHae dascribed as follows:

1. POS utilizes the interquartile range approach to robustly detect the minimbsetsof genes
that maximizes the correct assignment of training samples to their correspaaisses i.e., the
minimum subset that can yield the best classification accuracy on a traimangpsging the effects
of outliers.

2. A new filter-based technique which ranks genes according to thélicpive power in terms of the
overlapping degree between classes is proposed. In this context,rB€¥8{s a novel generalized
version, calledPOS score, of the overlapping score (OS) measure, proposed in [7].

3. POS provides genes categorization into the target class labels batesiraelative dominant
classes i.e., POS assigns each gene to the class label that has the magwsiop of correctly
assigned samples relative to class sizes.

In a benchmarking experiment, the classification error rates of the RaRdogst (RF) [22]4 Near-
est Neighbor £NN) [23], and Support Vector Machine (SVM) [24] classifiers dentmts that our
approach achieves a better performance than several other widdlgeise selection methods.

The paper is organized as follows. Section ‘Methods’ explains the pempmethod. The results of our
approach are compared with some other feature selection techniquetdn $8esults and discussion’.
Section ‘Conclusion’ concludes the paper and suggests future direction

Methods
POS approach for binary class problems
Microarray data are usually presented in the form of a gene expressitix, X = [z;;], such that

X € RP*N anduz;; is the observed expression value of géfer tissue samplg wherei =1, ..., P
andj = 1, ..., N. Each sample is also characterized by a target class lapetepresenting the



phenotype of the tissue sample being studied. .ee R be the vector of class labels such that its
jth elementy;, has a single valuewhich is eitherl or 2.

Analyzing the overlap between expression intervals of a gene foreliffefasses can provide a classifier
with an important aspect of a gene’s characteristic. The idea is that inagetae: can assign samples
(patients) to class because their geneexpression interval in that class is not overlapping with gene
intervals of the other class. In other words, géhas the ability to correctly classify samples for which
their genei expressions fall within the expression interval of a single class. Fomiostdrigure 1a
presents expression values of génwith 36 samples belonging to two different classes. It is clear that
genei; is relevant for discriminating samples between the target classes, béramsalues are falling

in non-overlapping ranges. Figure 1b, on the other hand, showsssipn values for another gefig
which looks less useful for distinguishing between these target cldssem)se their expression values
have a highly overlapping range.

Figure 1 An example for two different genes with different overlappng pattern. Expression values
of two different genesi(, i2) each of which with 36 samples belonging to 2 classes, 18 samples for
each clasga) expression values of gerng (b) expression values of getig

POS initially exploits the interquartile range approach to robustly define geslesrttzat report the dis-
criminative power of genes with a training set of samples avoiding outliectsff@hen, two measures

are assigned for each gene: proportional overlapping se6rsj and relative dominant clas’s(DC).
Analogously to [7] these two novel measures are exploited in the rankiagepio produce the final

set of ranked genes?OS is a gene relevance score that estimates the overlapping degree betaveen th
expression intervals of both given classes taking into account threwdagl) length of overlapping
region; (2) number of overlapped samples; (3) the proportion of daseatribution to the overlapped
samples. The latter factor is the incentive for the name we gave to our piregdetoportional Over-
lapping Scores (POS). The relative dominant cld8® () of a gene is the class that has the highest
proportion, relative to class sizes, of correctly assigned samples.

Definition of core intervals

For a certain geng by considering the expression valugs with a class labet; for each samplg, we
can define two expression intervals, one for each class, for that émeth class interval for gene
can be defined in the form:

I@C = [ai,c, bi,C]y 7= 1,..., P, CcC = 1,2, (1)
such that: ' ' , ‘
aic = Q") — 15IQR b, = Q9 + 1.5 IQR), )
Wherngi’C), ng’c) and QR denote the first, third empirical quartiles, and the interquartile range
of genei expression values for claggespectively. Figure 2 shows the potential effect of expression

outliers on extending the underlying intervals, if the range of training egpras are considered. Based
on the defined core intervals, we present the following definitions:

Non-outlier samples set , IL;, for gene: is defined as the set of samples whose expression values fall
inside their own target classes core interval. This set can be exprEssed
Li:{j::vijeli,cj‘a j:17"'aN}7 (3)

wherec; is the correct class label for sample



Total coreinterval , I;, for genei is given by the region between the global minimum and global max-
imum boundaries of core intervals for both classes. It is defined as:

Ii = fos, b, @

such thata; = min {a;1, ai2}, b = mazx {b; 1, b2}, whereq; ., b; . respectively represent the
minimum and maximum boundaries of core interval,, of genei with target class = 1, 2, (see
equations 1 and 2).

Theoverlap region Ii(”), for genei is defined as the interval yielded by the intersection between core
expression intervals of both target classes. It can be addressed as:

1 = i1 N 1. %)

(2

Overlapping samples set , V,, for genei is the set containing the samples whose expression values fall
within the overlap intervalfi(”), defined in the overlap region definition (see equation 5). The
overlapping sample set can be defined as:

Vi=L; -V, (6)
whereV’, represents the non-overlapping samples set which is defined as follows.

Non-overlapping samples set , V!, for genei is defined as the set consisting of elementd.gfde-

fined in equation 3, whose expression values don't fall within the ovdintap\/alli(”), defined in
equation 5. In this way, we can define this set as:

Vi={j:jel; Nwiy€Li16 Lis}. 7

For convenience(/) notation is used with interval to represent its length whilg| notation is
used with sef.} to represent its size.

Figure 2 Core intervals with gene mask. An example for core expression intervals of a gene with
18 and14 samples belonging to class 1, in red colour, and class 2, in green c@spectively with its
associated mask elements. Elements of the overlapping samples set ancgriapping samples set
are highlighted by squares and circles respectively.

Gene masks

For each gene, we define a mask based on its observed expressemamduconstructed core intervals
presented in subsection ‘Definition of core intervals’. Géngask reports the samples that gérman
unambiguously assign to their correct target classes, i.e. the nonfpiedasamples set’. Thus,
gene masks can represent the capability of genes to classify corredtlsaaple, i.e. it represents a
gene’s classification power. For a particular gérelementj of its mask is set ta if the corresponding
expression value;; belongs only to core expression interval of the single class;, i.e. if samplej

is a member of the s&f,. Otherwise, it is set to zero.

We define the gene masks matfix = [m;;] in which the mask of geneis presented by/; (theith
row of M) such that gene mask elemeny; is defined as:

(1 if jevi i=1,.,P
m”_{O otherwise ’ j=1,...,N ' (8)



Figure 2 shows the constructed core expression intefyaland; , associated with a particular gene
1 along-with its gene mask. The gene mask presented in this figure is sortedpmrding to the
observations ordered by increasing expression values.

The proposed POS measure and relative dominant class assignments

A novel overlapping score is developed to estimate the overlapping degiween different expression
intervals. Figures 3a and 3b represent examples of 2 different gereexdi,, with the same length of
overlap |nterval< (”)> = <IZ.(:)> = <I¢(U)>' length of total core intervakl;,) = (I;,) = (I;), and
total number of overlapped samplé¢s;, | = |V,,| = 12. These figures demonstrate that performing the
ordinary overlapping scores, proposed in earlier papers [6,4]ltri@sthe same value for both genes.
But, there is an element which differs in those examples and it may also #ifeaverlap degree
between classes. This element is the distribution of overlapping samplesssgxlaGene; has six
overlapped samples from each class, whereas geimas ten and two overlapping samples from class
1 and 2 respectively. By taking this status into account, geseould be reported to have less overlap
degree compared to gemg In this article, we develop a new score, called proportional overlapping
score POYS), that estimates the overlapping degree of a gene taking into account timsngld.e.
proportion of each class’s overlapped samples to the total number ddppirg samples.

Figure 3 lllustration for overlapping intervals with different propor tions. Examples for expression
values of 2 genes distinguishing between 2 clagaegenei; has overlapping samples distributed as
1:1,(b) geneiy has its overlapping samples distributed as 5:1 for classl:class2.

POS for a genei is defined as:

POS; = 4 <I(U)> W‘ <H9> ©)

whered, is the proportion of class samples among overlapping samples. Heficean be defined as:

|V‘?
\On

0. =

(10)

whereVZ . represent set of overlapping samples belonging to elss,V; . = {j|j € V; A ¢; =¢}),

7 1@
Z |Viel = |V;|. According to equation 9, values ¢tOS measure arezg < > and - <<1>> for

geneal andi, in Figures 3a and 3b respectively.

Larger overlapping intervals or higher numbers of overlapping sampkests in an increasingOS
value. Furthermore, as proportiofis andf- get closer to each other, the0O S value increases. The
most overlapping degree for a particular gene is achieved wWhen 6, = 0.5 while the other two
factors are fixed. We include the multipliet™in equation 9 to scalé’O.S score to be within the closed
interval [0, 1]. In this way, a lower score denotes gene with higher discriminative power.

Once the gene mask is defined &@.S index is computed, we assign each gene to its relative dominant
class RDC). RDC for genei is defined as follows:

> I(my=1)

JjeUe

RDC; = argmazx (12)

Ul ’



whereU. is the set of class samples (i.e.U. = {j|¢; = c¢}). Note that) |U.| = N, while m;; is

(&
the jth mask element of geng(seeequation 8).I (m;; = 1) represents an indicator which setsltd
m;; = 1, otherwise it sets to zero.

In this definition, the samples that belong to the Bétcategorized into their target classes are only
considered for each class. These samples are the ones that the glenenambiguously assign to their
target classes. According to our gene mask definitt@eg¢quation 8) they are the samples witlits

in the corresponding gene mask. Afterwards, the proportion of theckasples to its total sample
size has been evaluated. The class with the highest proportion is theerelatmant class of the gene.
Ties are randomly distributed on both classes. Genes are assigned tBh&iin order to associate
each gene with the class it is more able to distinguish. As a result, the numhseciesl genes could
be balanced per class at our final selection process. The relativaiva for detecting the dominant
class can avoid the misleading assignment due to unbalanced class sifastidisteffects.

Selecting minimum subset of genes

Selecting a minimum subset of genes is one of the POS method stages in whidbrmaiion provided

by the constructed gene masks and @S scores are analyzed. This subset is designated to be the
minimum one that correctly classify the maximum number of samples in a given tyaatnavoiding

the effects of expression outliers. Such a procedure allows disposimglondant information e.g.,
genes with similar expression profiles.

Baralis et al. [25] have proposed a method that is somewhat similar to ocedue for detecting a
minimum subset of genes from microarray data. The main differencesar2j use the expression
range to define the intervals which are employed for constructing genespesk then apply a set-
covering approach to obtain the minimum feature subset. The same techrmiguiisned by [7] to get

a minimum gene subset using a greedy approach rather than the sémgover

Let G be a set containing all genes (i.65| = P). Also, letM (G) be its aggregate mask which is
defined as the logical disjunctidiogic OR)between all masks corresponding to genes that belong to
the set. It can be expressed as follows:

M. (G) = zé/(GMZ =M, V...V Mp (12)

Our objective is to search for the minimum subset, denote@ hyfor which M (G*) equals to the
aggregate mask of the set of gengg, (G). In other words, our minimum set of genes should satisfy
the following statement:

argmin | |G*|
G*CG

(M,, @)= v M.=M. (@))) . (13)

A modified version of the greedy search approach used by [7] is applib@ pseudo code of our
procedure is reported in Algorithm 1. Its inputs are the matrix of gene magkshe aggregate mask
of genesM _(G); and POS scores. It produces the minimum set of geri&s,as output.



Algorithm 1 Greedy Search - Minimum set of genes
Inputs: M, M (G)andPOS scores for all genes.
output: G*.

: while M _(G*) # M. (G) do
E=k+1

N
6: Sk = argmax (Z I (m;; = 1) | {Assign gene set whose masks have the max. bit§ of

ieG j=1
7. gr = argmin (POS;) {Select the candidate with the best score among the assigijed set
i € Sy

8: G* = G* + g {Update the target set by adding the selected candidate
9. forall i € Gdo
100 MY =l
11:  end for
12: end while

13: return G*

k) A M' (G*) {update gene masks such that the uncovered samples are only cedsider

At the initial step & = 0), we letG* = () and M (G*) = Oy (lines 2,3); whereM  (G*) is the
aggregate mask of the s8t, while Oy is a vector of zeros with the length. Then, at each iteration,
k, the following steps are performed:

1. The gene(s) with the highest number of mask bits sett@are) chosen to form the s&t (line 6).
This set could not be empty as long as the loop condition is still satisfied/i.éG*) # M. (G).
Under this condition, our selected genes don’t cover yet the maximum muhlsamples that
should be covered by our target gene set. Note that our definition fer mesks allowsd/ (G)
to report in advance which samples should be covered by the minimum sfigsees. Therefore,
there would be at least one gene mask which has at least one bitisdtttat condition is to
hold.

2. The gene with the lowedPOS score among genes By, if there are more than one, is then
selected (line 7). Itis denoted lgy.

3. The setG* is updated by adding the selected gepg(line 8).

4. All gene masks are also updated by performing the logical conjundtigic AND) with negated
aggregate mask of s&t* (line 10). The negated mask’ (G*) of the maskM_(G*) is the one
obtained by applying logical negation (logical complement) on this mask. Qaesdy, the bits
of ones corresponding to the classification of still uncovered samplemngreonsidered. Note
that M *) represents updated mask of gére thekth iteration such thatz ™ is its original gene

7. 7.

mask whose elements are computed according to equation 8.

5. The procedure is successively iterated and ends when all gens heagkno one bits anymore,
i.e. the selected genes cover the maximum number of samples. This situatiommphsied iff
M. (G*) = M_(G).

Thus, this procedure detects the minimum set of genes required to progibdedhclassification cover-
age for a given training set. In addition, genes are descendinglyeattdgrnumber of bits within the
minimum setG*.



Final gene selection

The POS score alone can rank genes according to their overlapping degreeuttitiing into account
the class that has more correctly assigned samples by each gene (whiehatidressed as the dominant
class of that gene). Consequently, high-ranked genes may all hatgléynto only correctly classify
samples belonging to the same class. Such a case is more likely to happen insitwétiacunbalanced
class-size distributions. As a result, a biased selection could result. Asgigre dominant class on
a relative basis, as proposed in subsection ‘The propé¥ed measure and relative dominant class
assignments’, and taking these assignments into account during the gkimg narocess allows us to
overcome this problem.

Therefore, the gene ranking process is performed by considerthgidS scores andR DC'. Within
each relative dominant claggwherec = 1, 2), all genes that have not been chosen in the minimum
set,G*, and whosekRDC' = ¢ are sorted by an increasing order .S values. Now, we have two
disjoint groups (one for each class) of ranked genes. The topmiestigeelected from each group in a
round-robin fashion to compose the gene ranking list.

The minimum subset of genes, presented in subsection ‘Selecting minimuet stipenes’, is extended
by adding the top ranked genes in the gene ranking list, wheiis the required number extending the
minimum subset up to the total number of requested geneshich is an input of the POS method
set by the user. The resulting final set includes the minimum subset of gegerdless of theiPO.S
values, because these genes allow the considered classifier to cari@sslfy the maximum number of
training samples.

The pseudo code of the Proportional Overlapping Scores (POS) mistheqmbrted in Algorithm 2.



Algorithm 2 POS Method For Gene Selection
Inputs: X, Y and number of selected gene3. (
Output: Sequence of the selected gefies

: forall i € Gdo
forc=1to2do

Calculatel; . as defined in equation 1.
end for
for j =1to N do

Computem;; as defined in equation 8.
end for
ComputePOS; as defined in equations 9 and 10.
Assign RDC; as defined in equation 11.
10: end for
11: Let M € RE*N be the gene mask matrix, whebé = [m;;].
12: ObtainM__(G) as defined in equation 12adgregate mask of gerjes
13: Use the Greedy Search approach, presented in algorithm 1, with inpatiseles)M, M (G), and

POS;,i=1,..., P, tooutput the minimum subset of genés.,.
14: G = G — G*. {exclude the minimum subset from the set of ggnes
15: for c=1to2do
16: Let G. = (g : 9k € G, RDC,,, =c) be a sequence of genes such tDS,, <
POSgC(kH), whereg. denotes gene in thieth rank in sequenc&.. {define the sequence of genes
sorted by an increasing order BIOS values within theRDC classc}
17: end for
Getting the Final Gene Ranking

18: if » < |G*| then
19: T is the set whose members are the firgenes inG*.
20: else
21: T = G*. {initially get the minimum set in our final gene ranking}
22:  while |T| < rdo
23: ExtendT by one gene using round-robin fashion applying on the sequéh@asdG,.
24:  end while
25: end if
26: return T

© o Noa R bR

Results and discussion

For evaluating different feature selection methods, one can assesxctivagy of a classifier applied

after the feature selection process. Thus, the classification is basedrosélected gene expressions.
Such an assessment can verify the efficiency of identification of disciriméngenes. Jirapech and

Aitken [26] have analyzed several gene selection methods availableanddjave shown that the gene
selection method can have a significant impact on a classifier's accuBamh a strategy has been
applied in many studies including [7] and [8].

In this article, our experiment is conducted using eleven gene expresaiagets in which the POS
method is validated by comparison with five well-known gene selection techmidquee performance
is evaluated by obtaining the classification error rates from three diffetassifiers: Random Forest
(RF); k Nearest NeighborkNN); Support Vector Machine (SVM).



Table 1 summarizes the characteristics of the datasets. The estimated ctassiicar rate is based
on the Random Forest classifier with the full set of features, withous@lection, using 50 repetitions
of 10-fold cross validation. Eight of the datasets are bi-class, while theeeSrbct, GSE14333 and
GSE27854, are multi-classes. The two classes with topmost number of sarplesly considered
for the Srbct data, while the remaining classes are ignored, since wetenesibed only in binary clas-
sification analysis. For the GSE14333 data, patients with colorectal cahtend Il tumor ‘Union
Internationale Contre le Cancer (UICC)’ stages are combined in a singerelpresenting non-invasive
tumors, against patients with stage 11, which represents invasive turiddingreas for the GSE27854
data, a class composed of colorectal cancer patients with UICC stagddlliardefined against an-
other class involving patients with Il and IV stages. All datasets are pubdichilable, see section
‘Availability of supporting data’.

Table 1 Description of used gene expression datasets

Dataset Genes Samples Class-sizes Est. Error Source
Leukaemia 7129 72 4725 0.049 [27]
Breast 4948 78 34/44 0.369 [28]
Srbct 2308 54 29/25 0.0008 [29]
Prostate 10509 102 52/50 0.088 [29]
All 12625 128 95/33 0.000 [30]
Lung 12533 181 150/31 0.003 [31]
Carcinoma 7457 36 18/18 0.027 [32]
GSE24514 22215 49 34/15 0.0406 [33]
GSE4045 22215 37 29/8 0.2045 [34]
GSE14333 54675 229 138/91 0.4141 [35]
GSE27854 54675 115 57/58 0.4884 [36]

Fifty repetitions of 10-fold cross validation analysis were performed &mhecombination of dataset,
feature selection algorithm, and a given number of selected genes, upwittfb€he considered classi-
fiers. Random Forest is implemented using the R package ‘randomFoitsitsrdefault parameters,
i.e. ntree, mtry and nodesize are 5Q0; and 1 respectively. The R packages ‘class’ and ‘e1071’ are
used to perform thé Nearest Neighbor and Support Vector Machine classifiers respictivhe pa-
rameterk for NN classifier is chosen to bgN rounded to the nearest odd number, wh¥ris the total
number of observations (tissue samples). For each experimental repétidasplit seed was changed
while the same folds and training datasets were kept for all feature selectitrods. To avoid bias,
gene selection algorithms have been performed only on the training setsadfofold, the best subset
of genes has been selected according to the Wilcoxon Rank Sum tecfMtHRS), Minimum Redun-
dancy Maximum Relevance (mMRMR) method [8], MaskedPainter (MP)téfiatively Sure Independent
Screening (ISIS) [12], along-with our proposed method. The egpmas of the selected genes as well
as the class labels of the training samples have then been used to constrmmgldered classifiers.
The classification error rate on the test set is separately reportedcfockessifier and the average error
rate over all the fifty repetitions is then computed. Due to limitations of the R packagMRe’ [19],
MRMR selections could not be conducted for datasets having more tha#0*4i@atures. Therefore,
MRMR method is excluded from the analysis of the ‘GSE14333’ and ‘GSkR titasets.

The compared feature selection methods are used commonly within the migrdataaanalysis do-
main. Apiletti et al. [7] demonstrate that the MaskedPainter method has cutped many widely
used gene selection methods available in [9]. The mMRMR technique, pobpogEs], is intensively
used in microarray data analysis e.g., [19,37]. The ISIS feature selesétrod exploits the principle
of correlation ranking with its ‘sure independence screening’ progsrdyved in [38] to select a set of
features based on an iterative process. In our experiment, the 18i8dae has been applied using the
‘SIS’ R package.



For large enough input feature sets, effective classifier algorithms magyrhore ability to mitigate the
potential effects of noisy and uninformative features by focusing morthe informative ones. For
instance, the Random Forest algorithm employs an embedded featut@sagbeocedure that results
in less reliance on uninformative input features. In other words, sefeatiarge number of features
may allow a classifier to compensate for potential feature selection shortcantiog the purpose of
comparing the effectiveness of the considered feature selection teesmigmproving the classification
accuracy, the experiment is designed to focus on small sets of seleatedctfe up to 50 genes.

Tables 2 and 3 show the average classification error rates obtained RBMRMR, MP and POS with
RF, kNN and SVM classifiers on Leukaemia and GSE24514 datasets respediaeh row provides
the average classification error rate at a specific number of selected, geported in the first column.
The aggregate average error value and the minimum error rate for edlobdhwéth each classifier are
provided in the last two rows. Average error rates yielded on the BegasSrbct datasets using RF,
kNN, and SVM classifiers are shown in Figure 4.



Table 2 Average classification error rates yielded by Random Forest: Nearest Neighbors and Support Vector Machine classifiers on ‘Letaemia’
dataset over all the 50 repetitions of 10-fold cross validation

RF kNN SVM
N.genes  “\vilRs  mRMR MP POS  Wi-RS  mRMR MP POS  Wi-RS  mRMR MP POS
1 0.126 0.211 0.015 0.003  0.141 0.220 0019 0005  0.133 0.238 0.022 0.005
2 0.083 0.197 0.017 0.001  0.110 0.195 0059 0.047  0.099 0.197 0.053 0.026
3 0.068 0.185 0.020 0.003  0.086 0198 0070 0.073 0.078 0.198 0.064 0.044
4 0.044 0.180 0.016 0.001  0.082 0.194 0076 0.069  0.068 0.178 0.070  0.050
5 0.043 0.168 0.015 0.002  0.077 0.191 0084 0.075 0.060 0.172 0.079  0.060
6 0.037 0.170 0.018 0.005  0.074 0.188 0.087 0.065 0.052 0.171 0082  0.065
7 0.036 0.161 0.018 0.004  0.077 0.182 0.090 0.065 0.049 0.162 0.086  0.069
8 0.035 0.158 0.020 0.004  0.081 0.186 0.092 0.063 0.047 0.166 0090  0.074
9 0.032 0.161 0.015 0.003  0.082 0.176 0.090 0.067 0.049 0.162 0092  0.083
10 0.031 0.157 0018 0003  0.078 0.181 0094 0.067 0.050 0.159 0092  0.079
20 0.030 0.141 0028 0001  0.085 0.162 0102 0.064 0.062 0.145 0.088  0.068
30 0.030 0.131 0029 0001  0.085 0.155 0.108 0.070 0.058 0.139 0.093  0.066
40 0.031 0.118 0031 0000  0.084 0.142 0.105 0.078 0.053 0.127 0094  0.069
50 0.031 0.119 0029 0001  0.083 0.135 0.107 0.078 0.049 0.126 0101  0.062
Avg. 0.041 0.157 0.021 0002  0.087 0.179 0085 0.063  0.065 0.167 0.079  0.059
Min. 0.030 0.118 0015 0.000  0.074 0.135 0019 0.005  0.047 0.126 0.022 0.005

Boldface numbers indicate the minimum average of classification error theebighest accuracy) achieved with the corresponding classifiechtseze of

selected gene sets, reported in the first column.



Table 3 Average classification error rates yielded by Random Forestt Nearest Neighbors and Support Vector Machine classifiers on ‘GSE®H14’
dataset over all the 50 repetitions of 10-fold cross validation

RF kNN SVM

N.genes  “\vilRs  mRMR MP POS  Wi-RS  mRMR MP POS  Wi-RS  mRMR MP POS
1 0.163 0.352 0.182 0.090  0.125 0.304 0.147 0.096  0.116 0.274 0.141 0.085
2 0.108 0.267 0.143 0.082  0.086 0.249 0117 0074  0.085 0.250 0.108  0.080
3 0.098 0.219 0.116 0.068  0.077 0.223 0093 0068  0.075 0.215 0.087 0.067
4 0.079 0.186 0.121 0.067  0.078 0.186 0082 0065  0.068 0.185 0.077 0.063
5 0.074 0.166 0.103 0.059  0.072 0.166 0070 0.063 0.062 0.166 0071  0.062
6 0.067 0.147 0.090 0.058  0.066 0.155 0.068 0.059 0.060 0.149 0.064  0.060
7 0.065 0.137 0.074 0.058 0.059 0.142 0064  0.060  0.059 0.135 0061  0.061
8 0.064 0.128 0.068 0.052 0.057 0.133 0.060  0.058 0.056 0.126 0.057 0.054
9 0.063 0.115 0.075 0.055 0.052 0.127 0061  0.057 0.053 0.113 0.052 0.050
10 0.063 0.104 0.066 0.051 0.048 0.116 0.058  0.058 0.050 0.105 0.047  0.048
20 0.058 0.076 0.047 0.037 0.032 0.088 0.048  0.050 0.044 0.078 0.041 0.039
30 0.057 0.067 0.039 0.034 0.035 0.071 0.041  0.043 0.042 0.070 0.038 0.034
40 0.057 0.073 0.040 0.034 0.037 0063  0.037  0.042 0.041 0069 0.037  0.037
50 0.055 0.063 0.038 0.032 0.036 0041 0036  0.039 0.041 0.059 0.038 0.036
Avg. 0.077 0.150 0.086 0.055  0.061 0.147 0070 0059  0.061 0.142 0.066 0.055
Min. 0.055 0.063 0038 0.032 0.032 0.041 0.036  0.039 0.041 0.059 0.037 0.034

Boldface numbers indicate the minimum average of classification error theebighest accuracy) achieved with the corresponding classifiechtseze of

selected gene sets, reported in the first column.



Figure 4 Averages of classification error rates for ‘Srbct’ and ‘Breast’ datasets. Average classifi-
cation error rates for ‘Srbct’ and ‘Breast’ data based on 50 repetifioA®ld CV using ISIS, Wil-RS,
mRMR, MP and POS methods.

The proportional overlapping scores (POS) approach yields a ggéormance with different classifiers
on all datasets. For the Random Forest classifier, in particular on EmiédaBreast, GSE24514 and
GSE4045 datasets, the classification average error rates on the temesletss than all other feature
selection techniques at all selected genes set sizes. On the Srbct, Allmydatasets, the POS method
provides lower error rates than all other methods on most set sizes. Whilihe Prostate dataset,
POS shows a comparable performance with the best technique (MP). Cantiaoma dataset, Wil-RS
technique has outperformed all methods for feature set sizes which ee¢hmo20 genes, whereas for
smaller sets, the MP method was the best. More details of the RF classifietts i be found in the
Additional file 1.

For thekNN classifier, POS provides a good classification performance. Itdfatatisn average error
rates are less than all other compared methods on Leukaemia and Btaeastslfor most selected set
sizes, see Table 2 and Figure 4. A similar case has been observed imipelataset, see Additional
file 2: Table S3. On the GSE24514 dataset, Wil-RS technique has outpedall methods for set
sizes that are more than eight, whereas for smaller sets, the POS wastth&/bés, on Srbct and
GSE4045 datasets, POS shows a comparable and a worse perforespesgively compared with the
best techniques, MP and Wil-RS respectively. More details oM classifier’s results can be found
in the Additional file 2.

For the SVM classifier, POS provides a good classification performana# nsed datasets. In particu-
lar on Breast and Lung datasets, the classification average erroomatestest sets are less than all other
feature selection techniques at all selected genes set sizes, seedrigtire manuscript and Additional
file 3: Table S3. The performance of POS outperformed all other comipae¢hods on the GSE24514
and Srbct datasets for almost all feature set sizes, see Table 3 anel&£igdn Leukaemia and GSE4045
datasets, POS is outperformed by other methods for set sizes more thandi2é respectively. More
details of the SVM classifier’s results can be found in the Additional file 3.

The improvement/deterioration in the classification accuracy is analyzedeantorihvestigate the qual-
ity performance of our proposal against the other techniques wherizghefsthe selected gene set
varies. The log ratio between the misclassification error rates of the cémdielaselected by the best
method of the compared techniques and the POS method is separately competathfolassifier on
different set sizes up to 50 genes. At each set size, the best mettimdooimpared techniques is identi-
fied and the log ratio between its error rate and corresponding errasfrite POS method is reported.
Figure 5 shows the results with each classifier. Positive values indicateviempemts of a classification
performance achieved by the POS method over the second best techrtiguganel on right bottom of
Figure 5 shows the averages of log ratios across all consideredtddtassach classifier.

Figure 5 Log ratio between the error rates of the best compared mthod and the POS. Log ra-

tios measure the improvement/deterioration achieved by the proposed metihdkheoliest compared
method for three different classifiers; RIAIN and SVM. The last panel shows the averages of log ratios
across all datasets for each classifier.

The POS approach provides improvements over the best method of theredngehniques for most
datasets with all classifiers, see panels of BNiN and SVM in Figure 5. On average across all datasets,
POS achieves an improvement over the best compared techniques atsiaksdor RF classifier by
between 0.055 and 0.720, measured by the log ratio of the error rateshighest improvement in
RF classification performance measured by log ratio, 0.720, is obtainezhatsgts of size 20. For



smaller sizes, the performance ratio decreases, but the POS apptibbgob\sdes the best accuracy,
see Figure 5. FOENN and SVM classifiers, the averages of improvements across Leukd@ragst,
Srbct, Lung, GSE24514, GSE4045, GSE14333 and GSE27854 bawalepicted at different set sizes
up to 50 genes. The proposed approach achieves improvemehtdNotlassifier at set sizes not more
than 20 features. The highest improvement measured by log ratio, 0. i@aised at the selected sets
composed of a single gene. For SVM classifier, improvements over theneéisod of the compared
techniques are achieved by the POS method at most set sizes. The mgihresement measured by
the log ratio of the error rates, 0.213, is observed at gene sets of &g see the right bottom panel
of Figure 5.

The best performing technique among the compared methods is not alveagartte for neither all
selected gene set sizes, all datasets nor all classifiers. Hence, thalg@@®m could keep its better
performance for large as well as small sets of selected genes with Rdratesst and Support Vector
Machine classifiers on individual datasets. While it could keep its befbrpsance withk Nearest
Neighbor classifier for only feature sets with small sizes (specificallyywe than 20). Consequently,
the POS feature selection approach is more able to adapt to differenhpdttita and to different clas-
sifiers than the other techniques, whose performance is more affectadyilyg the data characteristics
and the used classifier.

A method which is more able to minimize the dependency within its selected candidatesach
a particular level of accuracy using a smaller set of genes. To highlighenitire performances of
the compared methods against our proposed approach, we alsarpaifarcomparison between the
minimum error rates achieved by each method. Each method obtains its pariqitaum at different
size of selected gene set. Tables 4, 5, 6 summarizes these results fddRBnd SVM classifiers
respectively. Each row shows the minimum error rate (along-with its quorelng size, shown in
brackets) obtained by all methods for a specific dataset, reported inghediumn. Since the inherent
principal of the ISIS method may result in selecting sets with different siresdch fold of the cross
validation, the estimated error rate has been reported along-with the eszagf the selected feature
sets, shown in brackets. In addition, the error rates of the corregmpol@dssifier with the full set of
features, without feature selection, are reported in the last column [&SI4}®5, 6. A similar comparison
scheme is performed in [39].

Table 4 The minimum error rates yielded by Random Forest classifier wit feature selection meth-
ods along-with the classification error without selection

Dataset ISIS Wil-RS MRMR MP POS Full set
Leukaemia 0.003 (1) 0.030 (20) 0.118 (40) 0.015 (9) 0.0002(40) 0.049
Breast 0.407 (4) 0.371 (50) 0.407 (48) 0.354 (48) 0.308(45) 0.369
Srbct 0.092 (2.63) 0.069 (24) 0.074 (46) 0.009 (32) 0.003(48) 0.0008
Prostate 0.097 (4.18) 0.200 (50) 0.140 (50) 0.069 (50)0.062(50) 0.088
All 0.0004 (1.018) 0.143 (40) 0.011(50) 0(40) 0 (20) 0

Lung 0.022 (3.26) 0.040 (30) 0.016 (48) 0.008 (46) 0.007(48) 0.003

Carcinoma  0.171(1.29) 0.003(41) 0.017 (44) 0.019(5)  0.026 (20)  0.027
GSE24514  0.107(1.96)  0.054 (47) 0.063(50)  0.036 (48)0.032(24)  0.041

GSE4045 0.27 (1.47) 0.134 (24) 0.187(37) 0.137(21)0.114(27)  0.205
GSE14333 0.423(9)  0.421(10) - 0.438(31) 0.437(34)  0.414
GSE27854 0.448 (5)  0.401(15) - 0.444 (49)  0.451 (6) 0.488

The numbers in brackets represent the size, average size for ISI&netkhe gene set that correspond-
ing to the minimum error rate. Boldface numbers indicate the lowest errorthetdnighest accuracy)
among the compared methods for the corresponding datasets.



Table 5 The minimum error rates yielded by k£ Nearest Neighbor classifier with feature selection
methods along-with the classification error without selection

Dataset ISIS Wil-RS MRMR MP POS Full set
Leukaemia 0.064 (1) 0.074 (6) 0.135 (50) 0.019 (1) 0.005(2) 0.109
Breast 0.385 (4) 0.405 (11) 0.404 (50) 0.346 (19) 0.332(11) 0.405
Srbct 0.105 (2.63) 0.157 (3) 0.098 (48) 0.005(26) 0.005(22) 0.034
Lung 0.030 (3.26) 0.203 (12) 0.027 (49) 0.017 (17) 0.011(12) 0.0005

GSE24514 0.074 (1.96) 0.032(20) 0.041 (50) 0.036 (50) 0.039 (50) 0.041
GSE4045 0.239 (1.47) 0.066(43) 0.207 (38) 0.137 (50) 0.142 (3) 0.103
GSE14333 0.425 (9) 0.420(8) - 0.455 (23) 0.450 (34) 0.438
GSE27854 0.432 (5) 0.420(3) - 0.454 (13) 0.420(6) 0.464
The numbers in brackets represent the size, average size for ISI&netkhe gene set that correspond-
ing to the minimum error rate. Boldface numbers indicate the lowest errorthetdnighest accuracy)
among the compared methods for the corresponding datasets.

Table 6 The minimum error rates yielded by Support Vector Machine classifier with feature se-
lection methods along-with the classification error without selection

Dataset ISIS Wil-RS mRMR MP POS Full set
Leukaemia 0.018 (1) 0.047 (8) 0.126 (50) 0.022 (1) 0.005(1) 0.131
Breast 0.409 (4) 0.401 (39) 0.407 (50) 0.359 (21) 0.313(22) 0.438
Srbct 0.106 (2.63) 0.131 (50) 0.124 (49) 0.010 (21) 0.003(8) 0.079
Lung 0.013 (3.26) 0.066 (50) 0.026 (50) 0.021 (19) 0.010(47) 0.024

GSE24514 0.090 (1.96) 0.041 (40) 0.059 (50) 0.037 (40)0.034(30) 0.070
GSE4045 0.236 (1.47) 0.134 (24) 0.187 (37) 0.095(47) 0.114 (29) 0.214
GSE14333 0.416 (9) 0.427 (9) - 0.412(1) 0.431 (1) 0.407
GSE27854 0.434 (5) 0.431(25) - 0.465 (13) 0.456 (8) 0.50
The numbers in brackets represent the size, average size for ISI&dnetkhe gene set that correspond-
ing to the minimum error rate. Boldface numbers indicate the lowest errorthetdnighest accuracy)
among the compared methods for the corresponding datasets.

An effective feature selection technique is expected to produce statlenoess across several sub-
samples of the considered dataset. This property is particularly desioabiemarker selections within
a diagnostic setting. A stable feature selection method should yield a set ofjibalinformative
markers that are selected quite often, and randomly chosen featurasetisatected rarely or never.

The stability index proposed by Lausser et al. [40] is used to measureathititg of the compared
method at different set sizes of features. Values of this stability scageriiom1/\, where) is the
total number of used sub-samples (in our context 500), for the worst unstable selectionsitéor the
full stable selection. Table 7 and Figures 6 and 7 show the stability scodievént feature selection
methods for the ‘Srbct’, ‘GSE27854" and ‘GSE24514’ datasets msedy. Figure 6 shows that our
proposed approach provides more stable feature selections than WileRIBR methods at most set
sizes selected from ‘GSE27854’ dataset. For GSE24514 datasek Figepicts the stability scores of
compared feature selection techniques at different set sizes. UnlikeRMR and the MP approaches,
both the Wil-RS and the POS methods keep their stability degree for différestaf feature sets. The
POS method provides a stability degree close to the well established Wil-RS métbothe ‘Srbct’
data, the best stability scores among the compared methods are yielded lat POS set sizes, see
Table 7.



Table 7 Stability scores of the feature selection techniques over S@petitions of 10-fold cross
validation for ‘Srbct’ dataset

N. selected genes Wil-RS MRMR MP POS
5 0.789 0.097 0.815 0.760
10 0.804 0.198 0.788 0.844
15 0.804 0.302 0.853 0.911
20 0.857 0.405 0.898 0.908
25 0.883 0.506 0.871 0.872
30 0.896 0.579 0.871 0.870
35 0.868 0.640 0.852 0.859
40 0.858 0.705 0.833 0.847
45 0.862 0.754 0.812 0.835
50 0.873 0.803 0.800 0.820

Figure 6 Stability scores for ‘GSE27854’ dataset. Stability scores at different sizes of features sets
that selected by Wil-RS, MP and POS methods on ‘GSE27854" dataset.

Figure 7 Stability scores for ‘GSE24514’ dataset. Stability scores at different sizes of features sets
that selected by Wil-RS, mRMR, MP and POS methods on ‘GSE24514’ dataset.

A stable selection does not guarantee the relevancy of the selecteeéctattine considered response
of the target class labels. The prediction accuracy yielded by a clagsified on the selected features
should also be highlighted. The relation between the accuracy and stabdityelea outlined by Fig-
ures 8 and 9 for the ‘Lung’ and ‘GSE27854’ respectively. The stabilitgres were combined with
corresponding error rates yielded by three different classifiers:kRN; SVM. Different dots for the
same feature selection method correspond to different set sizes afefeatince stability degree in-
creases from the bottom to the top on the vertical axis and the classificatbtwnnareases to the right
on the horizontal axis, the best method is the one whose dots are depictedipptir-left corner of the
plot. For all classifiers, our proposed method achieve a good tradetifeen accuracy and stability
for ‘Lung’ data, see Figure 8. For ‘GSE27854" data with #MXN classifier, POS provides a better
trade-off between accuracy and stability than other compared methodse¥ghwith the RF and SVM
classifiers, POS is outperformed by Wil-RS.

Figure 8 Stability-accuracy plot for ‘Lung’ dataset. The stability of the feature selection methods
against the corresponding estimated error rates on ‘Lung’ dataseeriineates have been measured by
50 repetations of 10-fold cross validation for three different classififandom Forest (RF}; Nearest
Neighbor &NN); Support Vector Machine (SVM).

Figure 9 Stability-accuracy plot for ‘GSE27854’ dataset. The stability of the feature selection

methods against the corresponding estimated error rates on ‘GSE2¥#884&t. The error rates have
been measured by 50 repetations of 10-fold cross validation for thriszedif classifiers: Random

Forest (RF)% Nearest Neighbork(NN); Support Vector Machine (SVM).

Genomic experiments are representative examples for high-dimensitasdtsa However, our proposal
of feature selection can be also used on other high-dimensional dati@,1¢.and [42].



All procedures described in this manuscript have been programmed iRtpackage named ‘propOver-
lap’. It would be available for download from the Comprehensive R ArcNetwork (CRAN) reposi-
tory (http://cran.us.r-project.org/) as soon as possible.

Conclusion

The idea of selecting genes based on analysing the overlap of theissixm® across two phenotypes,
taking into account the proportions of overlapping samples, is consideitaes article. To this end,

we defined core gene expressions and robustly constructed gene tmaisillow us to report a gene’s
predictive power avoiding the effects of outliers. In addition, a novetescnamed as the Proportional
Overlapping ScoreRROS), is proposed by which a gene’s overlapping degree is estimated. We then
utilized the constructed gene masks along-with the gene scores to assign ithemmisubset of genes
that provide the maximum number of correctly classified samples in a trainingTéés. minimum
subset of genes is then combined with the top ranked genes accordingRo)thi¢o produce a final
gene selection.

Our new procedure is applied on eleven publicly available gene expnedaiasets with different char-
acteristics. Feature sets of different sizes, up to 50 genes, are dalsatg widely used gene selec-
tion methods: Wilcoxon Rank Sum (Wil-RS); Minimum redundancy maximum raeleydmRMR);
MaskedPainter (MP); Iteratively sure independence screenin@)(l&bng-with our proposal, POS.
Then, the prediction models of three different classifiers: RandonmsEdréNearest Neighbor; Sup-
port Vector Machine are constructed with the selected features. The tstiolassification error rates
obtained by the considered classifiers are used for evaluating therparfce of POS.

For the Random Forest classifier, POS performed better than the cahfpatere selection methods
on ‘Leukaemia’, ‘Breast’, ‘GSE24514’ and ‘GSE4045’ datasetslag@ene set sizes that have been
investigated. POS also outperformed all other methods on ‘Lung’, ‘All’ @rtct’ datasets at: small
(i.e., less than 7); moderate and large (ie2); large (i.e.,> 5) sets of genes respectively. On average,
our proposal improves the compared techniques by bet&&eand51% of the misclassification error
rates achieved by their candidates.

For thek Nearest Neighbor classifier, POS outperformed all other methods akaeenia’, ‘Breast’,
‘Lung’ and ‘GSE27854’. While it shows a comparable performance taMaskedPainter method on
the ‘Srbct’. On average across all considered datasets, POS aebpmgaroves the best performance of
the compared methods by up26% of the misclassification error rates achieved using their selections
at small set sizes less thaa features.

For the Support Vector Machine classifier, POS outperformed all othiraie on ‘Leukaemia’, ‘Breast’,
‘Srbct’, ‘Lung’ and ‘GSE24514’. While the MaskedPainter provides thinimum error rates on
‘GSE4045’ and ‘GSE14333'. Whereas on ‘GSE27854’ data, the WilndRank Sum is the best. On
average across all considered datasets, POS approach improvesttipertiormance of the compared
methods by up t@6% of the misclassification error rates achieved using their selections akediiffeet
sizes.

The stability of the selections yielded by the compared feature selection metsiodsthe cross vali-
dation technique has been highlighted. Stability scores computed at differesizes of the selected
features show that the proposed method has a stable performancédi@mdi§izes of selected features.
The analysed relationship between classification accuracies yieldeddwy dHferent classifiers and
stability confirms that the POS method can provide a good trade-off betwagglitg and classification
accuracy.



The intuition for the better performance of our new method might be that whoemgarating together
genes with less overlapping degrees across different phenotygigsaed by taking into account a
useful element of overlapping analysis, i.e. the proportions of ovezthgpmples, with those genes
which could capture the distinct underlying structure of samples by meayeiefmasks, then a classi-
fier could be more able to gain more information from the learning procesghhaof those could be
gained by other selected same sized sets of genes.

In the future, one can investigate the possibility of extending POS method tbehawulti-class situa-

tions. Constructing a framework for POS in which mutual information betweeaegare considered in
the final gene set might be another useful direction. Such a framewoaitll be effective in selecting
the discriminative genes with a low degree of dependency.

Availability of supporting data

The datasets supporting the results of this article are publicly available. @hg &and Leukaemia
datasets can be downloaded from [http://cilab.ujn.edu.cn/datasets.htm]. Bdt@’al Prostate datasets
are available in [http://www.gems-system.org/]. The Carcinoma dataset canidih
[http://genomics-pubs.princeton.edu/oncology/]. While the Colon, All and@raatasets are available
in the [Bioconductor] repository, [http://www.bioconductor.org/] from thpd®kages [‘ColonCA, ‘All’
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