57 research outputs found

    Genetic associations of the vitamin D and antiviral pathways with natural resistance to HIV-1 infection are influenced by interpopulation variability

    Get PDF
    Vitamin D (VitD) may modulate anti-HIV-1 responses modifying the risk to acquire the HIV-1-infection. We performed a nested case-control exploratory study involving 413 individuals; HIV-1-exposed seropositives (cases) and seronegatives (HESN) (controls) from three cohorts: sexually-exposed from Colombia and Italy and parenterally-exposed from Spain. The association and interactions of 139 variants in 9 VitD pathway genes, and in 14 antiviral genes with resistance/susceptibility (R/S) to HIV-1 infection was evaluated. Associations between variants and mRNA levels were also analyzed in the Colombian samples. Variants and haplotypes in genes of VitD and antiviral pathways were associated with R/S, but specific associations were not reproduced in all cohorts. Allelic heterogeneity could explain such inconsistency since the associations found in all cohorts were consistently in the same genes: VDR and RXRA of the VitD pathway genes and in TLR2 and RNASE4. Remarkably, the multi-locus genotypes (interacting variants) observed in genes of VitD and antiviral pathways were present in most HESNs of all cohorts. Finally, HESNs carrying resistance-associated variants had higher levels of VitD in plasma, of VDR mRNA in blood cells, and of ELAFIN and defensins mRNA in the oral mucosa. In conclusion, despite allelic heterogeneity, most likely due to differences in the genetic history of the populations, the associations were locus dependent suggesting that genes of the VitD pathway might act in concert with antiviral genes modulating the resistance phenotype of the HESNs. Although these associations were significant after permutation test, only haplotype results remained statistically significant after Bonferroni test, requiring further replications in larger cohorts and functional analyzes to validate these conclusions.This work was supported by Departamento administrativo de ciencia, tecnología e innovación de Colombia, COLCIENCIAS (grant no. 111549326091); Universidad de Antioquia UdeA, Colombia (sostenibilidad); Universidad Cooperativa de Colombia (code INV1900); Consejería de Salud de la Junta de Andalucía (PI-0335/2009, PI-0118-2013, PI-0481-2012, and AC-0095-2013), Gilead (GLDL13-00145), the Ministerio de Sanidad (EC11-2086, PI021476, and PI10/01232), the Red de Investigación en SIDA (ISCIII-RETIC RD06/006 and RD12/0017), the Fundación Maratón TV3 (020730 and 020732) and the Universidad de Jaén (UJA2013/10/03 and UJA2013/08/12)

    A regulatory polymorphism in HAVCR2 modulates susceptibility to HIV-1 infection

    Get PDF
    The HAVCR2 gene encodes TIM-3, an immunoglobulin superfamily member expressed by exhausted CD8+ T cells during chronic viral infection. We investigated whether genetic variation at HAVCR2 modulates the susceptibility to HIV-1 acquisition; specifically we focused on a 3\u2032 UTR variant (rs4704846, A/G) that represents a natural selection target. We genotyped rs4704846 in three independent cohorts of HIV-1 exposed seronegative (HESN) individuals with different geographic origin (Italy and Spain) and distinct route of exposure to HIV-1 (sexual and injection drug use). Matched HIV-1 positive subjects and healthy controls were also analyzed. In all case-control cohorts the minor G allele at rs4704846 was more common in HIV-1 infected individuals than in HESN, with healthy controls showing intermediate frequency. Results from the three association analyses were combined through a random effect meta-analysis, which revealed no heterogeneity among samples (Cochrane's Q, p value = 0.89, I2 = 0) and yielded a p value of 6.8 710 124. The minor G allele at rs4704846 was found to increase HAVCR2 expression after in vitro HIV-1 infection. Thus, a positively selected polymorphism in the 3\u2032 UTR, which modulates HAVCR2 expression, is associated with the susceptibility to HIV-1 infection. These data warrant further investigation into the role of TIM-3 in the prevention and treatment of HIV-1/AIDS

    CXCR4 Expression in Prostate Cancer Progenitor Cells

    Get PDF
    Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44+/CD133+ prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy

    The CXCL12γ Chemokine Displays Unprecedented Structural and Functional Properties that Make It a Paradigm of Chemoattractant Proteins

    Get PDF
    The CXCL12γ chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12γ is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12γ through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12γ both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12γ strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12γ one of the higher affinity for HS (Kd = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12γ to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12α. In good agreement, mutant CXCL12γ chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12γ features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12γ the paradigm of haptotactic proteins, which regulate essential homeostatic functions by promoting directional migration and selective tissue homing of cells

    Hypoxia and TGF-β Drive Breast Cancer Bone Metastases through Parallel Signaling Pathways in Tumor Cells and the Bone Microenvironment

    Get PDF
    BACKGROUND: Most patients with advanced breast cancer develop bone metastases, which cause pain, hypercalcemia, fractures, nerve compression and paralysis. Chemotherapy causes further bone loss, and bone-specific treatments are only palliative. Multiple tumor-secreted factors act on the bone microenvironment to drive a feed-forward cycle of tumor growth. Effective treatment requires inhibiting upstream regulators of groups of prometastatic factors. Two central regulators are hypoxia and transforming growth factor (TGF)- beta. We asked whether hypoxia (via HIF-1alpha) and TGF-beta signaling promote bone metastases independently or synergistically, and we tested molecular versus pharmacological inhibition strategies in an animal model. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed interactions between HIF-1alpha and TGF-beta pathways in MDA-MB-231 breast cancer cells. Only vascular endothelial growth factor (VEGF) and the CXC chemokine receptor 4 (CXCR4), of 16 genes tested, were additively increased by both TGF-beta and hypoxia, with effects on the proximal promoters. We inhibited HIF-1alpha and TGF-beta pathways in tumor cells by shRNA and dominant negative receptor approaches. Inhibition of either pathway decreased bone metastasis, with no further effect of double blockade. We tested pharmacologic inhibitors of the pathways, which target both the tumor and the bone microenvironment. Unlike molecular blockade, combined drug treatment decreased bone metastases more than either alone, with effects on bone to decrease osteoclastic bone resorption and increase osteoblast activity, in addition to actions on tumor cells. CONCLUSIONS/SIGNIFICANCE: Hypoxia and TGF-beta signaling in parallel drive tumor bone metastases and regulate a common set of tumor genes. In contrast, small molecule inhibitors, by acting on both tumor cells and the bone microenvironment, additively decrease tumor burden, while improving skeletal quality. Our studies suggest that inhibitors of HIF-1alpha and TGF-beta may improve treatment of bone metastases and increase survival

    Genomic organization and promoter characterization of human CXCR4 gene.

    No full text
    CXCR4 is the receptor for the CXC chemokine SDF1 that has essential functions on embryo organogenesis, immunological functions and T lymphocyte trafficking. Recently, CXCR4 has drawn unexpected attention as it was recently identified as a co-factor required for entry of lymphotropic HIV isolates in CD4+ T lymphocytes. CXCR4 is the only SDF1 receptor identified so far. This suggests that CXCR4 expression is critical for the biological effects of SDF1. To investigate the mechanisms controlling both the constitutive and induced expression of CXCR4 receptors we have isolated and characterized the promoter region and determined the genomic structure of the human gene. The CXCR4 gene contains two exons separated by an intronic sequence. A 2.6 kb 5'-flanking region located upstream the CXCR4 open reading frame contains a TATA box and the transcription start site characteristic of a functional promoter. This region also contains putative consensus binding sequences for different transcription factors, some of them associated with the hemopoiesis and lymphocyte development.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    IFNL4 genotype influences the rate of HIV-1 seroconversion in men who have sex with men

    No full text
    Individuals lacking interferon lambda 4 (IFNL4) protein due to a common null mutation (rs368234815) in the IFNL4 gene display higher resistance against several infections. The influence of IFNL4 on HIV-1 infection is still under discussion and conflicting results have been reported. This study intended to corroborate or refute the association of the null allele of IFNL4 and HIV-1 predisposition in a cohort of men who have sex with men (MSM). IFNL4 null genotype was assessed on 619 HIV-1-seronegative MSM who were followed for 36 months during a trial of a prophylactic vaccine against HIV-1. Of those, 257 individuals seroconverted during this period. A logistic regression model was constructed including demographic and IFNL4 genotype. In addition, a meta-analysis using data from the current study and other European populations was conducted. The null IFNL4 genotypes were correlated with lower HIV-1 seroconversion (Adjusted OR = 0.4 [95%CI: 0.2–0.8], P = 0.008) and longer time to seroconversion (889 vs. 938 days, P= 0.01). These results were validated by a meta-analysis incorporating data from other European populations and the result yielded a significant association of the IFNL4 null genotype under a dominant model with a lower probability of HIV-1 infection (OR=0.4 [95% CI: 0.3-0.6]; P= 1.3 x 10E-5)
    corecore