143 research outputs found

    Analysis of Proteasomal Proteolysis during the In Vitro Metacyclogenesis of Trypanosoma cruzi

    Get PDF
    Proteasomes are large protein complexes, whose main function is to degrade unnecessary or damaged proteins. The inhibition of proteasome activity in Trypanosoma cruzi blocks parasite replication and cellular differentiation. We demonstrate that proteasome-dependent proteolysis occurs during the cellular differentiation of T. cruzi from replicative non-infectious epimastigotes to non-replicative and infectious trypomastigotes (metacyclogenesis). No peaks of ubiquitin-mediated degradation were observed and the profile of ubiquitinated conjugates was similar at all stages of differentiation. However, an analysis of carbonylated proteins showed significant variation in oxidized protein levels at the various stages of differentiation and the proteasome inhibition also increased oxidized protein levels. Our data suggest that different proteasome complexes coexist during metacyclogenesis. The 20S proteasome may be free or linked to regulatory particles (PA700, PA26 and PA200), at specific cell sites and the coordinated action of these complexes would make it possible for proteolysis of ubiquitin-tagged proteins and oxidized proteins, to coexist in the cell

    De Novo Assembly of the Dirofilaria immitis Genome by Long-Read Nanopore-Based Sequencing Technology on an Adult Worm from a Canine Cardiopulmonary Dirofilariosis Case

    Get PDF
    Dirofilaria immitis is a zoonotic parasitic nematode that infects domestic and wild canids, among its vertebrate hosts. The genetic analysis of D. immitis nowadays transcends the need for genetic taxonomy of nematodes, such as the study of resistance to macrocyclic lactone. We expanded the use of long-read nanopore-based sequencing technology on nematodes by performing genomic de novo assembly of a D. immitis specimen retrieved from a canine cardiopulmonary dirofilariasis case using the ONT MinION platform, followed by the study of macrocyclic lactone resistance. The assembled genome of D. immitis consists of 110 contigs with an N50 of 3687191. The genome size is 87899012 and contains a total of 9741 proteins; 6 ribosomal RNAs, with three belonging to the small subunit (18S) and three to the large subunit (28S); and 73 tRNAs. Subsequent analysis of six loci previously characterized as being associated to macrocyclic lactone resistance selection pressure showed that four have a genotype associated with either some loss of efficacy or the resistance phenotype. Considering the zoonotic potential of D. immitis, the identification of a resistant parasite alerts for the overuse of macrocyclic lactone in the region, which poses a potential risk to both veterinary and human public health. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Funding: This work was supported by national funds through the Fundação para a Ciência e Tec-nologia (FCT, Portuguese Foundation for Science and Technology) under projects UIDB/04750/2020, LA/P/0064/2020, UIDB/CVT/00772/2020, and LA/P/0059/2020

    Green manure in coffee systems in the region of Zona da Mata, Minas Gerais: characteristics and kinetics of carbon and nitrogen mineralization.

    Get PDF
    The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis)to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation.C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun

    Decomposition and nutrient release of leguminous plants in coffee agroforestry systems.

    Get PDF
    Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and(lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants

    Impairment of Adenosinergic System in Rett syndrome: Novel Therapeutic Target to Boost BDNF Signalling

    Get PDF
    Rett syndrome (RTT; OMIM#312750) is mainly caused by mutations in the X-linked MECP2 gene (methyl-CpG-binding protein 2 gene; OMIM*300005), which leads to impairments in the brain-derived neurotrophic factor (BDNF) signalling. The boost of BDNF mediated effects would be a significant breakthrough but it has been hampered by the difficulty to administer BDNF to the central nervous system. Adenosine, an endogenous neuromodulator, may accomplish that role since through A2AR it potentiates BDNF synaptic actions in healthy animals. We thus characterized several hallmarks of the adenosinergic and BDNF signalling in RTT and explored whether A2AR activation could boost BDNF actions. For this study, the RTT animal model, the Mecp2 knockout (Mecp2-/y) (B6.129P2 (C)-Mecp2tm1.1Bird/J) mouse was used. Whenever possible, parallel data was also obtained from post-mortem brain samples from one RTT patient. Ex vivo extracellular recordings of field excitatory post-synaptic potentials in CA1 hippocampal area were performed to evaluate synaptic transmission and long-term potentiation (LTP). RT-PCR was used to assess mRNA levels and Western Blot or radioligand binding assays were performed to evaluate protein levels. Changes in cortical and hippocampal adenosine content were assessed by liquid chromatography with diode array detection (LC/DAD). Hippocampal ex vivo experiments revealed that the facilitatory actions of BDNF upon LTP is absent in Mecp2-/y mice and that TrkB full-length (TrkB-FL) receptor levels are significantly decreased. Extracts of the hippocampus and cortex of Mecp2-/y mice revealed less adenosine amount as well as less A2AR protein levels when compared to WT littermates, which may partially explain the deficits in adenosinergic tonus in these animals. Remarkably, the lack of BDNF effect on hippocampal LTP in Mecp2-/y mice was overcome by selective activation of A2AR with CGS21680. Overall, in Mecp2-/y mice there is an impairment on adenosinergic system and BDNF signalling. These findings set the stage for adenosine-based pharmacological therapeutic strategies for RTT, highlighting A2AR as a therapeutic target in this devastating pathology.info:eu-repo/semantics/publishedVersio

    Children day care center: exposition or protection environment to intestinal parasites infestation in Aracaju, SE

    Get PDF
    Para avaliar se creches são ambientes protetores ou propiciadores de infestação intestinal, foi feito exame coproparasitológico de crianças de creche e grupo controle. Creche relacionou-se à maior prevalência de parasitoses (63% x 41,4 % ; p<0,01), com risco de infestação 1,5 vez maior

    Genetic diversity via REML-BLUP of ex situ conserved macauba [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] ecotypes.

    Get PDF
    Macauba [Acrocomia aculeata (Jacq.) Lodd. ex Mart.], a palm tree native to Brazil, has a high potential as an alternative source for vegetal oil production. It has several applications in the cosmetics, pharmaceuticals and food industries, and for the production of biofuels. The conservation and characterization of its germplasm are essential for progress in genetic improvement. In this sense, a study of genetic divergence was carried out based on predicted genetic values of 88 accessions form the Active Germplasm Bank of Macauba of EMBRAPA (Brazilian Agricultural Research Corporation). Seven morpho-agronomic characters were observed. The obtained dendrogram generated seven groups. There was a tendency to group accessions according to geographic origin. The graphical dispersion of accession scores plotted in a two-dimensional space showed a pattern correlated to the clusters observed in the dendrogram. The first two principal components (PC1 and PC2) explained 70.4% of the total divergence. The most important traits associated with PC1 and PC2 were the number of fruit bunches and fruit volume, respectively. The application of mixed models in the study of divergence was useful in structuring the germplasm. The structuring of the germplasm is crucial to assist in the choice of parents aiming the selection of recombinant individuals with a superior performance in segregating generations.[On-line first]
    corecore