22 research outputs found

    Spain's Budget Neglects Research

    Get PDF
    Letter.-- Carlos Fenollosa et al.Peer Reviewe

    Increased Membrane Cholesterol in Lymphocytes Diverts T-Cells toward an Inflammatory Response

    Get PDF
    Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40–50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4+ Foxp3+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response

    Definition of a Structured Training Curriculum for Robot-assisted Radical Cystectomy with Intracorporeal Ileal Conduit in Male Patients: A Delphi Consensus Study Led by the ERUS Educational Board

    No full text
    Robot-assisted radical cystectomy (RARC) continues to expand, and several surgeons start training for this complex procedure. This calls for the development of a structured training program, with the aim to improve patient safety during RARC learning curve. A modified Delphi consensus process was started to develop the curriculum structure. An online survey based on the available evidence was delivered to a panel of 28 experts in the field of RARC, selected according to surgical and research experience, and expertise in running training courses. Consensus was defined as >80% agreement between the responders. Overall, 96.4% experts completed the survey. The structure of the RARC curriculum was defined as follows: (1) theoretical training; (2) preclinical simulation-based training: 5-d simulation-based activity, using models with increasing complexity (ie, virtual reality, and dry-and wet-laboratory exercises), and nontechnical skills training session; (3) clinical training: modular console activity of at least 6 mo at the host center (a RARC case was divided into 11 steps and steps of similar complexity were grouped into five modules); and (4) final evaluation: blind review of a video-recorded RARC case. This structured training pathway will guide a starting surgeon from the first steps of RARC toward independent completion of a full procedure. Clinical implemen-tation is urgently needed. Patient summary: Robot-assisted radical cystectomy (RARC) is a complex procedure. The first structured training program for RARC was developed with the goal of aiding surgeons to overcome the learning curve of this procedure, improving patients' safety at the same time. (c) 2020 European Association of Urology. Published by Elsevier B.V. All rights reserved.Radiolog

    Definition of a Structured Training Curriculum for Robot-assisted Radical Cystectomy with Intracorporeal Ileal Conduit in Male Patients: A Delphi Consensus Study Led by the ERUS Educational Board

    No full text
    Robot-assisted radical cystectomy (RARC) continues to expand, and several surgeons start training for this complex procedure. This calls for the development of a structured training program, with the aim to improve patient safety during RARC learning curve. A modified Delphi consensus process was started to develop the curriculum structure. An online survey based on the available evidence was delivered to a panel of 28 experts in the field of RARC, selected according to surgical and research experience, and expertise in running training courses. Consensus was defined as >80% agreement between the responders. Overall, 96.4% experts completed the survey. The structure of the RARC curriculum was defined as follows: (1) theoretical training; (2) preclinical simulation-based training: 5-d simulation-based activity, using models with increasing complexity (ie, virtual reality, and dry-and wet-laboratory exercises), and nontechnical skills training session; (3) clinical training: modular console activity of at least 6 mo at the host center (a RARC case was divided into 11 steps and steps of similar complexity were grouped into five modules); and (4) final evaluation: blind review of a video-recorded RARC case. This structured training pathway will guide a starting surgeon from the first steps of RARC toward independent completion of a full procedure. Clinical implemen-tation is urgently needed. Patient summary: Robot-assisted radical cystectomy (RARC) is a complex procedure. The first structured training program for RARC was developed with the goal of aiding surgeons to overcome the learning curve of this procedure, improving patients' safety at the same time. (c) 2020 European Association of Urology. Published by Elsevier B.V. All rights reserved

    Enhanced Recovery After Robot-assisted Radical Cystectomy: EAU Robotic Urology Section Scientific Working Group Consensus View.

    No full text
    Radical cystectomy (RC) is associated with frequent morbidity and prolonged length of stay (LOS) irrespective of surgical approach. Increasing evidence from colorectal surgery indicates that minimally invasive surgery and enhanced recovery programmes (ERPs) can reduce surgical morbidity and LOS. ERPs are now recognised as an important component of surgical management for RC. However, there is comparatively little evidence for ERPs after robot-assisted radical cystectomy (RARC). Due to the multimodal nature of ERPs, they are not easily validated through randomised controlled trials.Accepted manuscript (12 month embargo
    corecore