25 research outputs found
Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity
Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)
Data Driven {2-D}-to-{3-D} Video Conversion for Soccer
© 1999-2012 IEEE. A wide adoption of 3-D videos is hindered by the lack of high-quality 3-D content. One promising solution to this problem is through data-driven 2-D-To-3-D video conversion. Such approaches are based on learning depth maps from a large dataset of 2-D+Depth images. However, current conversion methods, while general, produce low-quality results with artifacts that are not acceptable to many viewers. We propose a novel, data-driven method for 2-D-To-3-D video conversion. Our method transfers the depth gradients from a large database of 2-D+Depth images. Capturing 2-D+Depth databases, however, are complex and costly, especially for outdoor sports games. We address this problem by creating a synthetic database from computer games and showing that this synthetic database can effectively be used to convert real videos. We propose a spatio-Temporal method to ensure the smoothness of the generated depth within individual frames and across successive frames. In addition, we present an object boundary detection method customized for 2-D-To-3-D conversion systems, which produces clear depth boundaries for players. We implement our method and validate it by conducting user studies that evaluate depth perception and visual comfort of the converted 3-D videos. We show that our method produces high-quality 3-D videos that are almost indistinguishable from videos shot by stereo cameras. In addition, our method significantly outperforms the current state-of-The-Art methods. For example, up to 20% improvement in the perceived depth is achieved by our method, which translates to improving the mean opinion score from good to excellent