310 research outputs found

    System for the measurement of ultra-low stray light levels

    Get PDF
    An apparatus is described for measuring the effectiveness of stray light suppression light shields and baffle arrangements used in optical space experiments and large space telescopes. The light shield and baffle arrangement and a telescope model are contained in a vacuum chamber. A source of short, high-powered light energy illuminates portions of the light shield and baffle arrangement and reflects a portion of same to a photomultiplier tube by virtue of multipath scattering. The resulting signal is transferred to time-channel electronics timed by the firing of the high energy light source allowing time discrimination of the signal thereby enabling the light scattered and suppressed by the model to be distinguished from the walls and holders around the apparatus

    Control and Non-Payload Communications Generation 1 Prototype Radio Flight Test Report

    Get PDF
    Unmanned aircraft (UA) represent a new capability that will provide a variety of services in the Government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized because of the lack of a common understanding of what is required to safely operate Unmanned Aircraft Systems in the National Airspace System (UAS in the NAS). The desire and ability to fly UA is of increasing urgency. The application of UA to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UA to the NAS. Existing Federal Aviation Regulations, procedures, and technologies do not allow routine UA access to the NAS. Access to the NAS is hampered by challenges such as the lack of an onboard pilot to see and avoid other aircraft; the ability of a single pilot or operator to control multiple UA; the reliance on command and control (C2) links; the altitudes, speeds, and duration at which the aircraft fly; and the wide variation in UA size and performance. NASA is working with other Government agencies to provide solutions that reduce technical barriers and make access to the NAS routine. This goal will be accomplished through system-level integration of key concepts, technologies, or procedures and through demonstrations of these integrated capabilities in an operationally relevant environment. This project provides an opportunity to transition the acquired empirical data and knowledge to the Federal Aviation Administration and other stakeholders to help them define the requirements for routine UA access to the NAS.Radio communications channels for UA are currently managed through exceptions and use either Department of Defense frequencies for line-of-sight (LOS) and satellite-based communications links, low-power LOS links in amateur bands, or unlicensed Industrial/Scientific/Medical (ISM) frequencies. None of these frequency bands are designated for safety and regularity of flight. Only recently has radiofrequency (RF) spectrum been allocated by the International Telecommunications Union specifically for commercial UA C2, LOS communication (L-Band: 960 to 1164 MHz, and C-Band: 5030 to 5091 MHz). The safe and efficient integration of UA into the NAS requires the use of protected RF spectrum allocations and a new data communications system that is both secure and scalable to accommodate the potential growth of these new aircraft. Data communications for UA-referred to as control and non-payload communications (CNPC)-will be used to exchange information between a UA and a ground station (GS) to ensure safe, reliable, and effective UA flight operation. The focus of this effort is on validating and allocating new RF spectrum and data link communications to enable civil UA integration into the NAS. Through a cost-sharing cooperative agreement with Rockwell Collins, Inc., the NASA Glenn Research Center is exploring and performing the necessary development steps to realize a prototype UA CNPC system. These activities include investigating signal waveforms and access techniques, developing representative CNPC radio hardware, and executing relevant testing and validation activities. There is no intent to manufacture the CNPC end product, rather the goals are to study, demonstrate, and validate a typical CNPC system that will allow safe and efficient communications within the L-Band and C-Band spectrum allocations. The system is addressing initial "seed" requirements from RTCA, Inc., Special Committee 203 (SC-203) and is on a path to Federal Aviation Administration certification. This report provides results from the flight testing campaign of the Rockwell Collins Generation 1 prototype radio, referred hereafter as the "radio." The radio sets operate within the 960- to 977-MHz frequency band with both air and ground radios using identical hardware. Flight tests involved one aircraft and one GS. Results include discussion of aircraft flight paths and associated radio performance

    A systematic review of naturalistic interventions in refugee populations

    Get PDF
    Naturalistic interventions with refugee populations examine outcomes following mental health interventions in existing refugee service organisations. The current review aimed to examine outcomes of naturalistic interventions and quality of the naturalistic intervention literature in refugee populations with the view to highlight the strengths and limitations of naturalistic intervention studies. Database search was conducted using the search terms ‘refugee’, ‘asylum seeker’, ‘treatment’, ‘therapy’ and ‘intervention. No date limitations were applied, but searches were limited to articles written in English. Seven studies were identified that assessed the outcome of naturalistic interventions on adult refugees or asylum seekers in a country of resettlement using quantitative outcome measures. Results showed significant variation in the outcomes of naturalistic intervention studies, with a trend towards showing decreased symptomatology at post-intervention. However, conclusions are limited by methodological problems of the studies reviewed, particularly poor documentation of intervention methods and lack of control in the design of naturalistic intervention studies. Further examination of outcomes following naturalistic interventions is needed with studies which focus on increasing the rigour of the outcome assessment process

    Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1

    Get PDF
    Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER+ breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context

    Chaos and the continuum limit in the gravitational N-body problem II. Nonintegrable potentials

    Get PDF
    This paper continues a numerical investigation of orbits evolved in `frozen,' time-independent N-body realisations of smooth time-independent density distributions corresponding to both integrable and nonintegrable potentials, allowing for N as large as 300,000. The principal focus is on distinguishing between, and quantifying, the effects of graininess on initial conditions corresponding, in the continuum limit, to regular and chaotic orbits. Ordinary Lyapunov exponents X do not provide a useful diagnostic for distinguishing between regular and chaotic behaviour. Frozen-N orbits corresponding in the continuum limit to both regular and chaotic characteristics have large positive X even though, for large N, the `regular' frozen-N orbits closely resemble regular characteristics in the smooth potential. Viewed macroscopically both `regular' and `chaotic' frozen-N orbits diverge as a power law in time from smooth orbits with the same initial condition. There is, however, an important difference between `regular' and `chaotic' frozen-N orbits: For regular orbits, the time scale associated with this divergence t_G ~ N^{1/2}t_D, with t_D a characteristic dynamical time; for chaotic orbits t_G ~ (ln N) t_D. At least for N>1000 or so, clear distinctions exist between phase mixing of initially localised orbit ensembles which, in the continuum limit, exhibit regular versus chaotic behaviour. For both regular and chaotic ensembles, finite-N effects are well mimicked, both qualitatively and quantitatively, by energy-conserving white noise with amplitude ~ 1/N. This suggests strongly that earlier investigations of the effects of low amplitude noise on phase space transport in smooth potentials are directly relevant to real physical systems.Comment: 20 pages, including 21 FIGURES, uses RevTeX macro

    Protein kinase Cδ expression in breast cancer as measured by real-time PCR, western blotting and ELISA

    Get PDF
    The protein kinase C (PKC) family of genes encode serine/threonine kinases that regulate proliferation, apoptosis, cell survival and migration. Multiple isoforms of PKC have been described, one of which is PKCδ. Currently, it is unclear whether PKCδ is involved in promoting or inhibiting cancer formation/progression. The aim of this study was therefore to investigate the expression of PKCδ in human breast cancer and relate its levels to multiple parameters of tumour progression. Protein kinase Cδ expression at the mRNA level was measured using real-time PCR (n=208) and at protein level by both immunoblotting (n=94) and ELISA (n=98). Following immunoblotting, two proteins were identified, migrating with molecular masses of 78 and 160 kDa. The 78 kDa protein is likely to be the mature form of PKCδ but the identity of the 160 kDa form is unknown. Levels of both these proteins correlated weakly but significantly with PKCδ concentrations determined by ELISA (for the 78 kDa form, r=0.444, P<0.005, n=91 and for the 160 kDa form, r=0.237, P=0.023, n=91) and with PKCδ mRNA levels (for the 78 kDa form, r=0.351, P=0.001, n=94 and for the 160 kDa form, r=0.216, P=0.037, n=94). Protein kinase Cδ mRNA expression was significantly higher in oestrogen receptor (ER)-positive compared with ER-negative tumours (P=0.007, Mann–Whitney U-test). Increasing concentrations of PKCδ mRNA were associated with reduced overall patient survival (P=0.004). Our results are consistent with a role for PKCδ in breast cancer progression

    Non-Small Cell Lung Carcinoma Cell Motility, Rac Activation and Metastatic Dissemination Are Mediated by Protein Kinase C Epsilon

    Get PDF
    Background: Protein kinase C (PKC) e, a key signaling transducer implicated in mitogenesis, survival, and cancer progression, is overexpressed in human primary non-small cell lung cancer (NSCLC). The role of PKCe in lung cancer metastasis has not yet been established. Principal Findings: Here we show that RNAi-mediated knockdown of PKCe in H358, H1299, H322, and A549 NSCLC impairs activation of the small GTPase Rac1 in response to phorbol 12-myristate 13-acetate (PMA), serum, or epidermal growth factor (EGF). PKCe depletion markedly impaired the ability of NSCLC cells to form membrane ruffles and migrate. Similar results were observed by pharmacological inhibition of PKCe with eV1-2, a specific PKCe inhibitor. PKCe was also required for invasiveness of NSCLC cells and modulated the secretion of extracellular matrix proteases and protease inhibitors. Finally, we found that PKCe-depleted NSCLC cells fail to disseminate to lungs in a mouse model of metastasis. Conclusions: Our results implicate PKCe as a key mediator of Rac signaling and motility of lung cancer cells, highlighting its potential as a therapeutic target

    Antiproliferative activity of PEP005, a novel ingenol angelate that modulates PKC functions, alone and in combination with cytotoxic agents in human colon cancer cells

    Get PDF
    PEP005 is a novel ingenol angelate that modulates protein kinases C (PKC) functions by activating PKCδ and inhibiting PKCα. This study assessed the antiproliferative effects of PEP005 alone and in combination with several other anticancer agents in a panel of 10 human cancer cell lines characterised for expression of several PKC isoforms. PEP005 displayed antiproliferative effects at clinically relevant concentrations with a unique cytotoxicity profile that differs from that of most other investigated cytotoxic agents, including staurosporine. In a subset of colon cancer cells, the IC50 of PEP005 ranged from 0.01–140 μM. The antiproliferative effects of PEP005 were shown to be concentration- and time-dependent. In Colo205 cells, apoptosis induction was observed at concentrations ranging from 0.03 to 3 μM. Exposure to PEP005 also induced accumulation of cells in the G1 phase of the cell cycle. In addition, PEP005 increased the phosphorylation of PKCδ and p38. In Colo205 cells, combinations of PEP005 with several cytotoxic agents including oxaliplatin, SN38, 5FU, gemcitabine, doxorubicin, vinorelbine, and docetaxel yielded sequence-dependent antiproliferative effects. Cell cycle blockage induced by PEP005 in late G1 lasted for up to 24 h and therefore a 24 h lag-time between PEP005 and subsequent exposure to cytotoxics was required to optimise PEP005 combinations with several anticancer agents. These data support further evaluation of PEP005 as an anticancer agent and may help to optimise clinical trials with PEP005-based combinations in patients with solid tumours

    Transcribed-ultra conserved region expression is associated with outcome in high-risk neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma is the most common, pediatric, extra-cranial, malignant solid tumor. Despite multimodal therapeutic protocols, outcome for children with a high-risk clinical phenotype remains poor, with long-term survival still less than 40%. Hereby, we evaluated the potential of non-coding RNA expression to predict outcome in high-risk, stage 4 neuroblastoma.</p> <p>Methods</p> <p>We analyzed expression of 481 Ultra Conserved Regions (UCRs) by reverse transcription-quantitative real-time PCR and of 723 microRNAs by microarrays in 34 high-risk, stage 4 neuroblastoma patients.</p> <p>Results</p> <p>First, the comparison of 8 short- versus 12 long-term survivors showed that 54 UCRs were significantly (<it>P </it>< 0.0491) over-expressed in the former group. For 48 Ultra Conserved Region (UCRs) the expression levels above the cut-off values defined by ROC curves were strongly associated with good-outcome (OS: 0.0001 <<it>P </it>< 0.0185, EFS: 0.0001 <<it>P </it>< 0.0491). Then we tested the Transcribed-UCR (T-UCR) threshold risk-prediction model on an independent cohort of 14 patients. The expression profile of 28 T-UCRs was significantly associated to prognosis and at least 15 up-regulated T-UCRs are needed to discriminate (<it>P </it>< 0.0001) short- from long-survivors at the highest sensitivity and specificity (94.12%). We also identified a signature of 13 microRNAs differently expressed between long- and short-surviving patients. The comparative analysis of the two classes of non-coding RNAs disclosed that 9 T-UCRs display their expression level that are inversely correlated with expression of 5 complementary microRNAs of the signature, indicating a negative regulation of T-UCRs by direct interaction with microRNAs. Moreover, 4 microRNAs down-regulated in tumors of long-survivors target 3 genes implicated in neuronal differentiation, that are known to be over-expressed in low-risk tumors.</p> <p>Conclusions</p> <p>Our pilot study suggests that a deregulation of the microRNA/T-UCR network may play an important role in the pathogenesis of neuroblastoma. After further validation on a larger independent set of samples, such findings may be applied as the first T-UCR prognostic signature for high-risk neuroblastoma patients.</p
    • …
    corecore