183 research outputs found

    Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam

    Get PDF
    This study examined the emissions of powerful asthmatic agents called isocyanates from small-scale pyrolysis experiments of two common foams employed in mattress production such as flexible polyurethane foam (FPUF) and viscoelastic memory foam (VMF). A nitrogen atmosphere and five different temperatures, 300, 350, 400, 450 and 850 °C, were selected to carry out the experiments in order to evaluate the worst possible conditions for thermal degradation. A similar trend for both materials was found. At lower temperatures, diisocyanates were the most important products whereas at 850 °C monoisocyanates, and mainly isocyanic acid released mainly from the thermal cracking of diisocyanates evolved directly from the polymer chains. The total yields of isocyanates were in the range of 1.43–11.95 mg/m3 for FPUF at 300-850 °C and 0.05–6.13 mg/m3 for VMF, 300-850 °C. This difference could be a consequence of the lower amount of isocyanates employed in the VMF production which was confirmed by the nitrogen content of the foams, 5.95% FPUF vs. 3.34% in VMF. Additionally, a qualitative search for so far unknown isocyanates was performed in samples from the pyrolysis of FPUF at 300, 400 and 850 °C. It was confirmed that six different aminoisocyanates at 300 °C were evolved, whereas at 400 and 850 °C only five of them were detected. The general trend observed was a decrease of the aminoisocyanate levels with increasing pyrolysis temperature.Support for this work was provided by the Spanish Ministry of Education, Culture and Sport, by the CTQ2013-41006-R project from the Ministry of Economy and Competitiveness (Spain), the PROMETEOII/2014/007 project from the Valencian Community Government (Spain) and a mobility grant by the Spanish Ministry of Education, Culture and Sport (Spain) that enabled María Garrido to visit EMPA, in Switzerland

    Control of interneuron dendritic growth through NRG1/erbB4-mediated kalirin-7 disinhibition.

    Get PDF
    Neuregulin 1 (NRG1) is a secreted trophic factor that activates the postsynaptic erbB4 receptor tyrosine kinase. Both NRG1 and erbB4 have been repeatedly associated with schizophrenia, but their downstream targets are not well characterized. ErbB4 is highly abundant in interneurons, and NRG1-mediated erbB4 activation has been shown to modulate interneuron function, but the role for NRG1-erbB4 signaling in regulating interneuron dendritic growth is not well understood. Here we show that NRG1/erbB4 promote the growth of dendrites in mature interneurons through kalirin, a major dendritic Rac1-GEF. Recent studies have shown associations of the KALRN gene with schizophrenia. Our data point to an essential role of phosphorylation in kalirin-7's C terminus as the critical site for these effects. As reduced interneuron dendrite length occurs in schizophrenia, understanding how NRG1-erbB4 signaling modulates interneuron dendritic morphogenesis might shed light on disease-related alterations in cortical circuits

    Instrumental methods and challenges in quantifying polybrominated diphenyl ethers in environmental extracts: a review

    Get PDF
    Increased interest in the fate, transport and toxicity of polybrominated diphenyl ethers (PBDEs) over the past few years has led to a variety of studies reporting different methods of analysis for these persistent organic pollutants. Because PBDEs encompass a range of vapor pressures, molecular weights and degrees of bromine substitution, various analytical methods can lead to discrimination of some PBDE congeners. Recent improvements in injection techniques and mass spectrometer ionization methods have led to a variety of options to determine PBDEs in environmental samples. The purpose of this paper is therefore to review the available literature describing the advantages and disadvantages in choosing an injection technique, gas chromatography column and detector. Additional discussion is given to the challenges in measuring PBDEs, including potential chromatographic interferences and the lack of commercial standards for higher brominated congeners, which provides difficulties in examining degradation and debromination of BDE congeners, particularly for BDE 209

    The Chemistry of Griseofulvin

    Get PDF

    Bar-Coded Pyrosequencing Reveals the Responses of PBDE-Degrading Microbial Communities to Electron Donor Amendments

    Get PDF
    Polybrominated diphenyl ethers (PBDEs) can be reductively degraded by microorganisms under anaerobic conditions. However, little is known about the effect of electron donors on microbial communities involved in PBDEs degradation. Here we employed 454 Titanium pyrosequencing to examine the phylogenetic diversity, composition, structure and dynamics of microbial communities from microcosms under the conditions of different electron donor amendments. The community structures in each of the five alternate electron donor enrichments were significantly shifted in comparison with those of the control microcosm. Commonly existing OTUs between the treatment and control consortia increased from 5 to 17 and more than 50% of OTUs increased around 13.7 to 186 times at least in one of the microcosms after 90-days enrichment. Although the microbial communities at different taxonomic levels were significantly changed by different environmental variable groups in redundancy analysis, significant correlations were observed between the microbial communities and PBDE congener profiles. The lesser-brominated PBDE congeners, tri-BDE congener (BDE-32) and hexa-BDE, were identified as the key factors shaping the microbial community structures at OTU level. Some rare populations, including the known dechlorinating bacterium, Dehalobacter, showed significant positive-correlation with the amounts of PBDE congeners in the consortia. The same results were also observed on some unclassified bacteria. These results suggest that PBDEs-degrading microbial communities can be successfully enriched, and their structures and compositions can be manipulated through adjusting the environmental parameters

    A High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana

    Get PDF
    Meiotic recombination is initiated by the formation of numerous DNA double-strand breaks (DSBs) catalysed by the widely conserved Spo11 protein. In Saccharomyces cerevisiae, Spo11 requires nine other proteins for meiotic DSB formation; however, unlike Spo11, few of these are conserved across kingdoms. In order to investigate this recombination step in higher eukaryotes, we took advantage of a high-throughput meiotic mutant screen carried out in the model plant Arabidopsis thaliana. A collection of 55,000 mutant lines was screened, and spo11-like mutations, characterised by a drastic decrease in chiasma formation at metaphase I associated with an absence of synapsis at prophase, were selected. This screen led to the identification of two populations of mutants classified according to their recombination defects: mutants that repair meiotic DSBs using the sister chromatid such as Atdmc1 or mutants that are unable to make DSBs like Atspo11-1. We found that in Arabidopsis thaliana at least four proteins are necessary for driving meiotic DSB repair via the homologous chromosomes. These include the previously characterised DMC1 and the Hop1-related ASY1 proteins, but also the meiotic specific cyclin SDS as well as the Hop2 Arabidopsis homologue AHP2. Analysing the mutants defective in DSB formation, we identified the previously characterised AtSPO11-1, AtSPO11-2, and AtPRD1 as well as two new genes, AtPRD2 and AtPRD3. Our data thus increase the number of proteins necessary for DSB formation in Arabidopsis thaliana to five. Unlike SPO11 and (to a minor extent) PRD1, these two new proteins are poorly conserved among species, suggesting that the DSB formation mechanism, but not its regulation, is conserved among eukaryotes

    Facing the Challenge of Data Transfer from Animal Models to Humans: the Case of Persistent Organohalogens

    Get PDF
    A well-documented fact for a group of persistent, bioaccumulating organohalogens contaminants, namely polychlorinated biphenyls (PCBs), is that appropriate regulation was delayed, on average, up to 50 years. Some of the delay may be attributed to the fact that the science of toxicology was in its infancy when PCBs were introduced in 1920's. Nevertheless, even following the development of modern toxicology this story repeats itself 45 years later with polybrominated diphenyl ethers (PBDEs) another compound of concern for public health. The question is why? One possible explanation may be the low coherence between experimental studies of toxic effects in animal models and human studies. To explore this further, we reviewed a total of 807 PubMed abstracts and full texts reporting studies of toxic effects of PCB and PBDE in animal models. Our analysis documents that human epidemiological studies of PBDE stand to gain little from animal studies due to the following: 1) the significant delay between the commercialisation of a substance and studies with animal models; 2) experimental exposure levels in animals are several orders of magnitude higher than exposures in the general human population; 3) the limited set of evidence-based endocrine endpoints; 4) the traditional testing sequence (adult animals – neonates – foetuses) postpones investigation of the critical developmental stages; 5) limited number of animal species with human-like toxicokinetics, physiology of development and pregnancy; 6) lack of suitable experimental outcomes for the purpose of epidemiological studies. Our comparison of published PCB and PBDE studies underscore an important shortcoming: history has, unfortunately, repeated itself. Broadening the crosstalk between the various branches of toxicology should therefore accelerate accumulation of data to enable timely and appropriate regulatory action

    Analysis of the Basidiomycete Coprinopsis cinerea Reveals Conservation of the Core Meiotic Expression Program over Half a Billion Years of Evolution

    Get PDF
    Coprinopsis cinerea (also known as Coprinus cinereus) is a multicellular basidiomycete mushroom particularly suited to the study of meiosis due to its synchronous meiotic development and prolonged prophase. We examined the 15-hour meiotic transcriptional program of C. cinerea, encompassing time points prior to haploid nuclear fusion though tetrad formation, using a 70-mer oligonucleotide microarray. As with other organisms, a large proportion (∼20%) of genes are differentially regulated during this developmental process, with successive waves of transcription apparent in nine transcriptional clusters, including one enriched for meiotic functions. C. cinerea and the fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe diverged ∼500–900 million years ago, permitting a comparison of transcriptional programs across a broad evolutionary time scale. Previous studies of S. cerevisiae and S. pombe compared genes that were induced upon entry into meiosis; inclusion of C. cinerea data indicates that meiotic genes are more conserved in their patterns of induction across species than genes not known to be meiotic. In addition, we found that meiotic genes are significantly more conserved in their transcript profiles than genes not known to be meiotic, which indicates a remarkable conservation of the meiotic process across evolutionarily distant organisms. Overall, meiotic function genes are more conserved in both induction and transcript profile than genes not known to be meiotic. However, of 50 meiotic function genes that were co-induced in all three species, 41 transcript profiles were well-correlated in at least two of the three species, but only a single gene (rad50) exhibited coordinated induction and well-correlated transcript profiles in all three species, indicating that co-induction does not necessarily predict correlated expression or vice versa. Differences may reflect differences in meiotic mechanisms or new roles for paralogs. Similarities in induction, transcript profiles, or both, should contribute to gene discovery for orthologs without currently characterized meiotic roles
    • …
    corecore