66 research outputs found

    Interplay between Exonic Splicing Enhancers, mRNA Processing, and mRNA Surveillance in the Dystrophic Mdx Mouse

    Get PDF
    BACKGROUND: Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5′ and 3′ splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. METHODOLOGY/PRINCIPAL FINDING: Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3′ splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. CONCLUSIONS/SIGNIFICANCE: Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites

    Distinct effects of two hearing loss-associated mutations in the sarcomeric myosin MYH7b

    Get PDF
    For decades, sarcomeric myosin heavy chain proteins were assumed to be restricted to striated muscle where they function as molecular motors that contract muscle. However, MYH7b, an evolutionarily ancient member of this myosin family, has been detected in mammalian nonmuscle tissues, and mutations in MYH7b are linked to hereditary hearing loss in compound heterozygous patients. These mutations are the first associated with hearing loss rather than a muscle pathology, and because there are no homologous mutations in other myosin isoforms, their functional effects were unknown. We generated recombinant human MYH7b harboring the D515N or R1651Q hearing loss-associated mutation and studied their effects on motor activity and structural and assembly properties, respectively. The D515N mutation had no effect on steady-state actin-activated ATPase rate or load-dependent detachment kinetics, but increased actin sliding velocity due to an increased displacement during the myosin working stroke. Furthermore, we found that the D515N mutation caused an increase in the proportion of myosin heads that occupy the disordered-relaxed state, meaning more myosin heads are available to interact with actin. Although we found no impact of the R1651Q mutation on myosin rod secondary structure or solubility, we observed a striking aggregation phenotype when this mutation was introduced into nonmuscle cells. Our results suggest that each mutation independently affects MYH7b function and structure. Together, these results provide the foundation for further study of a role for MYH7b outside of the sarcomere

    Ex vivo correction of selenoprotein N deficiency in rigid spine muscular dystrophy caused by a mutation in the selenocysteine codon

    Get PDF
    Premature termination of translation due to nonsense mutations is a frequent cause of inherited diseases. Therefore, many efforts were invested in the development of strategies or compounds to selectively suppress this default. Selenoproteins are interesting candidates considering the idiosyncrasy of the amino acid selenocysteine (Sec) insertion mechanism. Here, we focused our studies on SEPN1, a selenoprotein gene whose mutations entail genetic disorders resulting in different forms of muscular diseases. Selective correction of a nonsense mutation at the Sec codon (UGA to UAA) was undertaken with a corrector tRNASec that was engineered to harbor a compensatory mutation in the anticodon. We demonstrated that its expression restored synthesis of a full-length selenoprotein N both in HeLa cells and in skin fibroblasts from a patient carrying the mutated Sec codon. Readthrough of the UAA codon was effectively dependent on the Sec insertion machinery, therefore being highly selective for this gene and unlikely to generate off-target effects. In addition, we observed that expression of the corrector tRNASec stabilized the mutated SEPN1 transcript that was otherwise more subject to degradation. In conclusion, our data provide interesting evidence that premature termination of translation due to nonsense mutations is amenable to correction, in the context of the specialized selenoprotein synthesis mechanism

    Phase I Clinical Trial of Systemically Administered TUSC2(FUS1)-Nanoparticles Mediating Functional Gene Transfer in Humans

    Get PDF
    Background: Tumor suppressor gene TUSC2/FUS1 (TUSC2) is frequently inactivated early in lung cancer development. TUSC2 mediates apoptosis in cancer cells but not normal cells by upregulation of the intrinsic apoptotic pathway. No drug strategies currently exist targeting loss-of–function genetic abnormalities. We report the first in-human systemic gene therapy clinical trial of tumor suppressor gene TUSC2. Methods: Patients with recurrent and/or metastatic lung cancer previously treated with platinum-based chemotherapy were treated with escalating doses of intravenous N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP):cholesterol nanoparticles encapsulating a TUSC2 expression plasmid (DOTAP:chol-TUSC2) every 3 weeks. Results: Thirty-one patients were treated at 6 dose levels (range 0.01 to 0.09 milligrams per kilogram). The MTD was determined to be 0.06 mg/kg. Five patients achieved stable disease (2.6–10.8 months, including 2 minor responses). One patient had a metabolic response on positron emission tomography (PET) imaging. RT-PCR analysis detected TUSC2 plasmid expression in 7 of 8 post-treatment tumor specimens but not in pretreatment specimens and peripheral blood lymphocyte controls. Proximity ligation assay, performed on paired biopsies from 3 patients, demonstrated low background TUSC2 protein staining in pretreatment tissues compared with intense (10–25 fold increase) TUSC2 protein staining in posttreatment tissues. RT-PCR gene expression profiling analysis of apoptotic pathway genes in two patients with high posttreatmen
    corecore