1,348 research outputs found

    Systematic challenges for future gravitational wave measurements of precessing binary black holes

    Get PDF
    The properties of precessing, coalescing binary black holes are presently inferred through comparison with two approximate models of compact binary coalescence. In this work we show these two models often disagree substantially when binaries have modestly large spins (a0.4a\gtrsim 0.4) and modest mass ratios (q2q\gtrsim 2). We demonstrate these disagreements using standard figures of merit and the parameters inferred for recent detections of binary black holes. By comparing to numerical relativity, we confirm these disagreements reflect systematic errors. We provide concrete examples to demonstrate that these systematic errors can significantly impact inferences about astrophysically significant binary parameters. For the immediate future, parameter inference for binary black holes should be performed with multiple models (including numerical relativity), and carefully validated by performing inference under controlled circumstances with similar synthetic events.Comment: 12 pages, 9 figure

    Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes

    Get PDF
    Current template-based gravitational wave searches for compact binary coalescences (CBC) use waveform models that neglect the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar (,m)=(2,2)(\ell,|m|)=(2,2) modes. We study the effect of such a neglection for the case of aligned-spin CBC searches for equal-spin (and non-spinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its Zero-Detuned High Energy Power version, that we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a non-spinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 ROM waveform family, which only considers quadrupolar modes, towards hybrid post-Newtonian/Numerical Relativity waveforms which contain higher order modes. We find that for all LIGO versions, losses of more than 10%10\% of events occur for mass ratio q6q\geq6 and M100MM \geq 100M_\odot due to the neglection of higher modes. Moreover, for iLIGO and eaLIGO, losses notably increase up to (39,23)%(39,23)\% respectively for the highest mass (220M)(220M_\odot) and mass ratio (q=8q=8) studied. For the case of early AdvLIGO, losses of 10%10\% occur for M>50MM>50M_\odot and q6q\geq6. Neglection of higher modes leads to observation-averaged systematic parameter biases towards lower spin, total mass and chirp mass. For completeness, we perform a preliminar, non-exhaustive comparison of systematic biases to statistical errors. We find that, for a given SNR, systematic biases dominate over statistical errors at much lower total mass for eaLIGO than for AdvLIGO

    Carbonatación de diatomeas y génesis de calizas/dolomías diagenéticas en ambiente continental y marino (Mioceno de Tresjuncos, Cuenca y Níjar, Almería). Un ejemplo de secuestro de CO2 en la Naturaleza

    Get PDF
    Carbonate (calcite and dolomite) pseudomorphs after diatoms were identified from marine (Messinian, Níjar section) and freshwater (Turolian, Tresjuncos section) diatomites. The mineralogical and petrological study has allowed to know the replacement of opal-A by calcite or dolomite, and the consequent formation of diagenetic limestones/dolostones, deducing the factors that favor this replacement in both environments. The data obtained are relevant to the research about the use of diatomites for the capture and storage of carbon dioxide through carbonation. A pseudomorphic carbonatation process of the frustules occurred by a direct replacement of the opal-A and a cementation of the microporosity. Opal-A was replaced by calcite or dolomite via a coupled dissolution-precipitation process. The organization of the opal A microspheres inside the frustules could determine the organization of multi-ion complexes / nanoparticles of amorphous carbonates that would later recrystallize to calcite or dolomite crystals. The carbonation of the lacustrine diatomites was favored by the great amount of biota (amphibians, crusta­ceans, insects, plants…etc.) included in them. In this environment, the sulphate-reduction processes during the degradation of the organic matter generated CO2, which along with pH and salinity changes, facilitated the replace­ments. It is possible that the carbonatation of the frustules was coeval to the calcite or dolomite precipitation during the fossilization of the biota, and therefore, early diagenetic in origin. The nodules and opaline lenticular beds formation triggered the carbonation process of the marine diatomites because CO2 and Ca are released from the dissolution of biocalcarenites/biocalcitutites included in the diatomites. Small pH variations around 9, and the presence of sulfates, would facilitate the replacement of the valves, during the burial diagenesis.En el presente trabajo se estudian los procesos de carbonatación de frústulas de diatomeas y la consecuente formación de calizas/dolomías diagenéticas, en estratos de diatomitas marinas (Messiniense, sección de Níjar) y lacustres (Turoliense, sección de Tresjuncos). Se realiza un estudio mineralógico y petrológico para conocer el reemplazo de ópalo A por calcita o dolomita, considerando los factores que favorecen este reemplazo en ambos ambientes. Los datos obtenidos son relevantes para la investigación del uso de diatomitas en la captura y alma­cenamiento de dióxido de carbono a través de su carbonatación. Los procesos pseudomórficos de carbonatación de las valvas se llevaron a cabo mediante el reemplazo directo del ópalo A por calcita o dolomita y la cementación de la microporosidad. La perfecta reproducción de las valvas indica un mecanismo de reacción con acoplamiento de disolución-precipitación en la interfase de reacción. Se interpreta que la organización de las microesferas de ópalo A, dentro de las valvas, condicionaría la organización de complejos amor­fos de varios iones o nanopartículas de carbonatos amorfos, que posteriormente recristalizarían a calcita o dolomita. En las diatomitas lacustres, el proceso de carbonatación de las valvas fue favorecido por la materia orgánica proveniente de la gran cantidad de biota (anfibios, crustáceos, insectos, plantas... etc.) que incorporan. En este ambiente, los procesos de sulfato-reducción durante la degradación de la materia orgánica, generaron CO2, que junto con cambios de pH y salinidad facilitaron los reemplazos. Es posible que las carbonataciones de las valvas fueran coetáneas a la precipitación de calcita y dolomita que fosiliza la biota y por lo tanto, diagenéticas tempra­nas. En las diatomitas marinas, el proceso desencadenante del reemplazo de las valvas fue la formación de capas lenticulares y nódulos opalinos, ya que al disolverse los microfósiles calcáreos que las diatomitas incluían, se liberó CO2 y Ca. Pequeñas variaciones de pH en un entorno alrededor de 9, y la presencia de sulfatos facilitarían el reemplazado durante la diagénesis por enterramiento

    Global Antifungal Profile Optimization of Chlorophenyl Derivatives against Botrytis cinerea and Colletotrichum gloeosporioides

    Get PDF
    Twenty-two aromatic derivatives bearing a chlorine atom and a different chain in the para or meta position were prepared and evaluated for their in vitro antifungal activity against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides. The results showed that maximum inhibition of the growth of these fungi was exhibited for enantiomers S and R of 1-(40-chlorophenyl)- 2-phenylethanol (3 and 4). Furthermore, their antifungal activity showed a clear structure-activity relationship (SAR) trend confirming the importance of the benzyl hydroxyl group in the inhibitory mechanism of the compounds studied. Additionally, a multiobjective optimization study of the global antifungal profile of chlorophenyl derivatives was conducted in order to establish a rational strategy for the filtering of new fungicide candidates from combinatorial libraries. The MOOPDESIRE methodology was used for this purpose providing reliable ranking models that can be used later

    Confusing Head-On Collisions with Precessing Intermediate-Mass Binary Black Hole Mergers

    Get PDF
    We report a degeneracy between the gravitational-wave signals from quasi-circular precessing black-hole mergers and those from extremely eccentric mergers, namely head-on collisions. Performing model selection on numerically simulated signals of head-on collisions using models for quasi-circular binaries we find that, for signal-to-noise ratios of 15 and 25, typical of Advanced LIGO observations, head-on mergers with respective total masses of M(125,300)MM\in (125,300)M_\odot and M(200,440)MM\in (200,440)M_\odot would be identified as precessing quasi-circular intermediate-mass black hole binaries, located at a much larger distance. Ruling out the head-on scenario would require to perform model selection using currently nonexistent waveform models for head-on collisions, together with the application of astrophysically motivated priors on the (rare) occurrence of those events. We show that in situations where standard parameter inference of compact binaries may report component masses inside (outside) the pair-instability supernova gap, the true object may be a head-on merger with masses outside (inside) this gap. We briefly discuss the potential implications of these findings for the recent gravitational-wave detection GW190521, which we analyse in detail in [Phys. Rev. Lett. 126, 081101]

    Nanoscale mosaicity revealed in peptide microcrystals by scanning electron nanodiffraction.

    Get PDF
    Changes in lattice structure across sub-regions of protein crystals are challenging to assess when relying on whole crystal measurements. Because of this difficulty, macromolecular structure determination from protein micro and nanocrystals requires assumptions of bulk crystallinity and domain block substructure. Here we map lattice structure across micron size areas of cryogenically preserved three-dimensional peptide crystals using a nano-focused electron beam. This approach produces diffraction from as few as 1500 molecules in a crystal, is sensitive to crystal thickness and three-dimensional lattice orientation. Real-space maps reconstructed from unsupervised classification of diffraction patterns across a crystal reveal regions of crystal order/disorder and three-dimensional lattice tilts on the sub-100nm scale. The nanoscale lattice reorientation observed in the micron-sized peptide crystal lattices studied here provides a direct view of their plasticity. Knowledge of these features facilitates an improved understanding of peptide assemblies that could aid in the determination of structures from nano- and microcrystals by single or serial crystal electron diffraction
    corecore