100 research outputs found

    Pan-genome analysis of the genus Finegoldia identifies two distinct clades, strain-specific heterogeneity, and putative virulence factors

    No full text
    Abstract Finegoldia magna, a Gram-positive anaerobic coccus, is an opportunistic pathogen, associated with medical device-related infections. F. magna is the only described species of the genus Finegoldia. We report the analysis of 17 genomes of Finegoldia isolates. Phylogenomic analyses showed that the Finegoldia population can be divided into two distinct clades, with an average nucleotide identity of 90.7%. One clade contains strains of F. magna, whereas the other clade includes more heterogeneous strains, hereafter tentatively named “Finegoldia nericia”. The latter species appears to be more abundant in the human microbiome. Surface structure differences between strains of F. magna and “F. nericia” were detected by microscopy. Strain-specific heterogeneity is high and previously identified host-interacting factors are present only in subsets of “F. nericia” and F. magna strains. However, all genomes encode multiple host factor-binding proteins such as albumin-, collagen-, and immunoglobulin-binding proteins, and two to four copies of CAMP (Christie-Atkins-Munch-Petersen) factors; in accordance, most strains show a positive CAMP reaction for co-hemolysis. Our work sheds new light of the genus Finegoldia and its ability to bind host components. Future research should explore if the genomic differences identified here affect the potential of different Finegoldia species and strains to cause opportunistic infections

    Molecular characterization of Escherichia coli strains that cause symptomatic and asymptomatic urinary tract infections

    Get PDF
    The differences between Escherichia coli strains associated with symptomatic and asymptomatic urinary tract infections (UTIs)remain to be properly determined. Here we examined the prevalence of plasmid types and bacteriocins, as well as genetic relatedness, in a dened collection of E. coli strains that cause UTIs. Comparative analysis identied a subgroup of strains with a high number of virulence genes (VGs) and microcins M/H47. We also identied associations between microcin genes, VGs, and specic plasmid types

    Staphylococcus saccharolyticus Isolated From Blood Cultures and Prosthetic Joint Infections Exhibits Excessive Genome Decay

    Get PDF
    The slow-growing, anaerobic, coagulase-negative species Staphylococcus saccharolyticus is found on human skin and in clinical specimens but its pathogenic potential is unclear. Here, we investigated clinical isolates and sequenced the genomes of seven strains of S. saccharolyticus. Phylogenomic analyses showed that the closest relative of S. saccharolyticus is Staphylococcus capitis with an average nucleotide identity of 80%. Previously sequenced strains assigned to S. saccharolyticus are misclassified and belong to S. capitis. Based on single nucleotide polymorphisms of the core genome, the population of S. saccharolyticus can be divided into two clades that also differ in a few larger genomic islands as part of the flexible genome. An unexpected feature of S. saccharolyticus is extensive genome decay, with over 300 pseudogenes, indicating ongoing reductive evolution. Many genes of the core metabolism are not functional, rendering the species auxotrophic for several amino acids, which could explain its slow growth and need for fastidious growth conditions. Secreted proteins of S. saccharolyticus were determined; they include stress response proteins such as heat and oxidative stress-related factors, as well as immunodominant staphylococcal surface antigens and enzymes that can degrade host tissue components. The strains secrete lipases and a hyaluronic acid lyase. Hyaluronidase as well as urease activities were detected in biochemical assays, with clade-specific differences. Our study revealed that S. saccharolyticus has adapted its genome, possibly due to a recent change of habitat; moreover, the data imply that the species has tissue-invasive potential and might cause prosthetic joint infections

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    Genome Sequence of E. coli O104:H4 Leads to Rapid Development of a Targeted Antimicrobial Agent against This Emerging Pathogen

    Get PDF
    A recent widespread outbreak of Escherichia coli O104:H4 in Germany demonstrates the dynamic nature of emerging and re-emerging food-borne pathogens, particularly STECs and related pathogenic E. coli. Rapid genome sequencing and public availability of these data from the German outbreak strain allowed us to identify an O-antigen-specific bacteriophage tail spike protein encoded in the genome. We synthesized this gene and fused it to the tail fiber gene of an R-type pyocin, a phage tail-like bacteriocin, and expressed the novel bacteriocin such that the tail fiber fusion was incorporated into the bacteriocin structure. The resulting particles have bactericidal activity specifically against E. coli strains that produce the O104 lipopolysaccharide antigen, including the outbreak strain. This O-antigen tailspike-R-type pyocin strategy provides a platform to respond rapidly to emerging pathogens upon the availability of the pathogen's genome sequence

    Outbreaks of virulent diarrheagenic Escherichia coli - are we in control?

    Get PDF
    Shiga toxin-producing Escherichia coli (STEC) are the most virulent diarrheagenic E. coli known to date. They can be spread with alarming ease via food as exemplified by a large sprout-borne outbreak of STEC O104:H4 in 2011 that was centered in northern Germany and affected several countries. Effective control of such outbreaks is an important public health task and necessitates early outbreak detection, fast identification of the outbreak vehicle and immediate removal of the suspected food from the market, flanked by consumer advice and measures to prevent secondary spread

    Towards a Pathogenic Escherichia coli Detection Platform Using Multiplex SYBRÂŽGreen Real-Time PCR Methods and High Resolution Melting Analysis

    Get PDF
    Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2) producing E. coli (VTEC or STEC respectively) have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA) has requested the monitoring of the “top-five” serogroups (O26, O103, O111, O145 and O157) most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae) in the case of VTEC, or aggregative protein (aggR), in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM) analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform

    Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community

    Get PDF
    Conjugal plasmids can provide microbes with full complements of new genes and constitute potent vehicles for horizontal gene transfer. Conjugal plasmid transfer is deemed responsible for the rapid spread of antibiotic resistance among microbes. While broad host range plasmids are known to transfer to diverse hosts in pure culture, the extent of their ability to transfer in the complex bacterial communities present in most habitats has not been comprehensively studied. Here, we isolated and characterized transconjugants with a degree of sensitivity not previously realized to investigate the transfer range of IncP- and IncPromA-type broad host range plasmids from three proteobacterial donors to a soil bacterial community. We identified transfer to many different recipients belonging to 11 different bacterial phyla. The prevalence of transconjugants belonging to diverse Gram-positive Firmicutes and Actinobacteria suggests that inter-Gram plasmid transfer of IncP-1 and IncPromA-type plasmids is a frequent phenomenon. While the plasmid receiving fractions of the community were both plasmid- and donor- dependent, we identified a core super-permissive fraction that could take up different plasmids from diverse donor strains. This fraction, comprising 80% of the identified transconjugants, thus has the potential to dominate IncP- and IncPromA-type plasmid transfer in soil. Our results demonstrate that these broad host range plasmids have a hitherto unrecognized potential to transfer readily to very diverse bacteria and can, therefore, directly connect large proportions of the soil bacterial gene pool. This finding reinforces the evolutionary and medical significances of these plasmids.Fil: Klumper, Uli. Technical University of Denmark; DinamarcaFil: Riber, Leise. Universidad de Copenhagen; DinamarcaFil: Dechesne, Arnaud. Technical University of Denmark; DinamarcaFil: Sannazzaro, Analía InÊs. Universidad de Copenhagen; DinamarcaFil: Hansen, Lars H.. Universidad de Copenhagen; Dinamarca. Aarhus University. Roskilde; DinamarcaFil: Sørensen, Søren. Universidad de Copenhagen; DinamarcaFil: Smets, Barth F. Technical University of Denmark; Dinamarc

    Transcriptomics and adaptive genomics of the asymptomatic bacteriuria Escherichia coli strain 83972

    Get PDF
    Escherichia coli strains are the major cause of urinary tract infections in humans. Such strains can be divided into virulent, UPEC strains causing symptomatic infections, and asymptomatic, commensal-like strains causing asymptomatic bacteriuria, ABU. The best-characterized ABU strain is strain 83972. Global gene expression profiling of strain 83972 has been carried out under seven different sets of environmental conditions ranging from laboratory minimal medium to human bladders. The data reveal highly specific gene expression responses to different conditions. A number of potential fitness factors for the human urinary tract could be identified. Also, presence/absence data of the gene expression was used as an adaptive genomics tool to model the gene pool of 83972 using primarily UPEC strain CFT073 as a scaffold. In our analysis, 96% of the transcripts filtered present in strain 83972 can be found in CFT073, and genes on six of the seven pathogenicity islands were expressed in 83972. Despite the very different patient symptom profiles, the two strains seem to be very similar. Genes expressed in CFT073 but not in 83972 were identified and can be considered as virulence factor candidates. Strain 83972 is a deconstructed pathogen rather than a commensal strain that has acquired fitness properties

    Uropathogenic E. coli Induce Different Immune Response in Testicular and Peritoneal Macrophages: Implications for Testicular Immune Privilege

    Get PDF
    Infertility affects one in seven couples and ascending bacterial infections of the male genitourinary tract by Escherichia coli are an important cause of male factor infertility. Thus understanding mechanisms by which immunocompetent cells such as testicular macrophages (TM) respond to infection and how bacterial pathogens manipulate defense pathways is of importance. Whole genome expression profiling of TM and peritoneal macrophages (PM) infected with uropathogenic E. coli (UPEC) revealed major differences in regulated genes. However, a multitude of genes implicated in calcium signaling pathways was a common feature which indicated a role of calcium-dependent nuclear factor of activated T cells (NFAT) signaling. UPEC-dependent NFAT activation was confirmed in both cultured TM and in TM in an in vivo UPEC infectious rat orchitis model. Elevated expression of NFATC2-regulated anti-inflammatory cytokines was found in TM (IL-4, IL-13) and PM (IL-3, IL-4, IL-13). NFATC2 is activated by rapid influx of calcium, an activity delineated to the pore forming toxin alpha-hemolysin by bacterial mutant analysis. Alpha-hemolysin suppressed IL-6 and TNF-ι cytokine release from PM and caused differential activation of MAP kinase and AP-1 signaling pathways in TM and PM leading to reciprocal expression of key pro-inflammatory cytokines in PM (IL-1ι, IL-1β, IL-6 downregulated) and TM (IL-1β, IL-6 upregulated). In addition, unlike PM, LPS-treated TM were refractory to NFκB activation shown by the absence of degradation of IκBι and lack of pro-inflammatory cytokine secretion (IL-6, TNF-ι). Taken together, these results suggest a mechanism to the conundrum by which TM initiate immune responses to bacteria, while maintaining testicular immune privilege with its ability to tolerate neo-autoantigens expressed on developing spermatogenic cells
    • …
    corecore