868 research outputs found

    Twin-photon techniques for photo-detector calibration

    Full text link
    The aim of this review paper is to enlighten some recent progresses in quantum optical metrology in the part of quantum efficiency measurements of photo-detectors performed with bi-photon states. The intrinsic correlated nature of entangled photons from Spontaneous Parametric Down Conversion phenomenon has opened wide horizons to a new approach for the absolute measurement of photo-detector quantum efficiency, outgoing the requirement for conventional standards of optical radiation; in particular the simultaneous feature of the creation of conjugated photons led to a well known technique of coincidence measurement, deeply understood and implemented for standard uses. On the other hand, based on manipulation of entanglement developed for Quantum Information protocols implementations, a new method has been proposed for quantum efficiency measurement, exploiting polarisation entanglement in addition to energy-momentum and time ones, that is based on conditioned polarisation state manipulation. In this review, after a general discussion on absolute photo-detector calibration, we compare these different methods, in order to give an accurate operational sketch of the absolute quantum efficiency measurement state of the art

    Experimental realization of a low-noise heralded single photon source

    Full text link
    We present a heralded single-photon source with a much lower level of unwanted background photons in the output channel by using the herald photon to control a shutter in the heralded channel. The shutter is implemented using a simple field programable gate array controlled optical switch.Comment: 4 pages, 5 figure

    Toward third order ghost imaging with thermal light

    Full text link
    Recently it has been suggested that an enhancement in the visibility of ghost images obtained with thermal light can be achieved exploiting higher order correlations [3]. This paper reports on the status of an higher order ghost imaging experiment carried on at INRIM labs exploiting a pseudo-thermal source and a CCD camera.Comment: To be published in Proceedings of Recent advances in Foundations of Quantum Mechanics and Quantum Informatio

    Generation of different Bell states within the SPDC phase-matching bandwidth

    Full text link
    We study the frequency-angular lineshape for a phase-matched nonlinear process producing entangled states and show that there is a continuous variety of maximally-entangled states generated for different mismatch values within the natural bandwidth. Detailed considerations are made for two specific methods of polarization entanglement preparation, based on type-II spontaneous parametric down-conversion (SPDC) and on SPDC in two subsequent type-I crystals producing orthogonally polarized photon pairs. It turns out that different Bell states are produced at the center of the SPDC line and on its slopes, corresponding to about half-maximum intensity level. These Bell states can be filtered out by either frequency selection or angular selection, or both. Our theoretical calculations are confirmed by a series of experiments, performed for the two above-mentioned schemes of producing polarization-entangled photon pairs and with two kinds of measurements: frequency-selective and angular-selective.Comment: submitted for publicatio

    Revealing interference by continuous variable discordant states

    Full text link
    In general, a pair of uncorrelated Gaussian states mixed in a beam splitter produces a correlated state at the output. However, when the inputs are identical Gaussian states the output state is equal to the input, and no correlations appear, as the interference had not taken place. On the other hand, since physical phenomena do have observable effects, and the beam splitter is there, a question arises on how to reveal the interference between the two beams. We prove theoretically and demonstrate experimentally that this is possible if at least one of the two beams is prepared in a discordant, i.e. Gaussian correlated, state with a third beam. We also apply the same technique to reveal the erasure of polarization information. Our experiments involves thermal states and the results show that Gaussian discordant states, even when they show a positive Glauber P-function, may be useful to achieve specific tasks.Comment: published versio

    Towards a new determination of the QCD Lambda parameter from running couplings in the three-flavour theory

    Full text link
    We review our new strategy and current status towards a high precision computation of the Lambda parameter from three-flavour simulations in QCD. To reach this goal we combine specific advantages of the Schr\"odinger functional and gradient flow couplings.Comment: 7 pages, 3 figures; Proceedings of the 32nd International Symposium on Lattice Field Theory; 23-28 June, 2014, Columbia University, New Yor
    • …
    corecore