291 research outputs found

    Para-Sasakian geometry in thermodynamic fluctuation theory

    Full text link
    In this work we tie concepts derived from statistical mechanics, information theory and contact Riemannian geometry within a single consistent formalism for thermodynamic fluctuation theory. We derive the concrete relations characterizing the geometry of the Thermodynamic Phase Space stemming from the relative entropy and the Fisher-Rao information matrix. In particular, we show that the Thermodynamic Phase Space is endowed with a natural para-contact pseudo-Riemannian structure derived from a statistical moment expansion which is para-Sasaki and {\eta}-Einstein. Moreover, we prove that such manifold is locally isomorphic to the hyperbolic Heisenberg group. In this way we show that the hyperbolic geometry and the Heisenberg commutation relations on the phase space naturally emerge from classical statistical mechanics. Finally, we argue on the possible implications of our results.Comment: Significant improvements and corrections from the previous version. Additional material adde

    Contract-Driven Implementation of Choreographies

    Get PDF
    Choreographies and Contracts are important concepts in Service Oriented Computing. Choreographies are the description of the behaviour of a service system from a global point of view, while contracts are the description of the externally observable message-passing behaviour of a given service. Exploiting some of our previous results about choreography projection and contract refinement, we show how to solve the problem of implementing a choreography via the composition of already available services that are retrieved according to their contracts

    A thermostat algorithm generating target ensembles

    Full text link
    We present a deterministic algorithm called contact density dynamics that generates any prescribed target distribution in the physical phase space. Akin to the famous model of Nos\'e-Hoover, our algorithm is based on a non-Hamiltonian system in an extended phase space. However the equations of motion in our case follow from contact geometry and we show that in general they have a similar form to those of the so-called density dynamics algorithm. As a prototypical example, we apply our algorithm to produce Gibbs canonical distribution for a one-dimensional harmonic oscillator.Comment: 6 pages, improved version, numerical results adde

    Contact Symmetries and Hamiltonian Thermodynamics

    Full text link
    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher's Information Matrix. In this work we analyze several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.Comment: 33 pages, 2 figures, substantial improvement of http://arxiv.org/abs/1308.674

    Conformal Gauge Transformations in Thermodynamics

    Full text link
    In this work we consider conformal gauge transformations of the geometric structure of thermodynamic fluctuation theory. In particular, we show that the Thermodynamic Phase Space is naturally endowed with a non-integrable connection, defined by all those processes that annihilate the Gibbs 1-form, i.e. reversible processes. Therefore the geometry of reversible processes is invariant under re-scalings, that is, it has a conformal gauge freedom. Interestingly, as a consequence of the non-integrability of the connection, its curvature is not invariant under conformal gauge transformations and, therefore, neither is the associated pseudo-Riemannian geometry. We argue that this is not surprising, since these two objects are associated with irreversible processes. Moreover, we provide the explicit form in which all the elements of the geometric structure of the Thermodynamic Phase Space change under a conformal gauge transformation. As an example, we revisit the change of the thermodynamic representation and consider the resulting change between the two metrics on the Thermodynamic Phase Space which induce Weinhold's energy metric and Ruppeiner's entropy metric. As a by-product we obtain a proof of the well-known conformal relation between Weinhold's and Ruppeiner's metrics along the equilibrium directions. Finally, we find interesting properties of the almost para-contact structure and of its eigenvectors which may be of physical interest

    Adaptable processes

    Get PDF
    We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities

    A Hierarchy of Scheduler Classes for Stochastic Automata

    Get PDF
    Stochastic automata are a formal compositional model for concurrent stochastic timed systems, with general distributions and non-deterministic choices. Measures of interest are defined over schedulers that resolve the nondeterminism. In this paper we investigate the power of various theoretically and practically motivated classes of schedulers, considering the classic complete-information view and a restriction to non-prophetic schedulers. We prove a hierarchy of scheduler classes w.r.t. unbounded probabilistic reachability. We find that, unlike Markovian formalisms, stochastic automata distinguish most classes even in this basic setting. Verification and strategy synthesis methods thus face a tradeoff between powerful and efficient classes. Using lightweight scheduler sampling, we explore this tradeoff and demonstrate the concept of a useful approximative verification technique for stochastic automata
    corecore