486 research outputs found
Decomposition of a complete graph into trails of given lengths
AbstractLet n be an even positive integer and l1, l2,…ls be a sequence of positive integers with a sum equal to 12n(n−1). We prove that Kn, the complete graph of order n, can be decomposed into trails of lengths l1, l2,…,ls if, and only if, s⩾12n
Affine configurations and pure braids
We show that the fundamental group of the space of ordered affine-equivalent
configurations of at least five points in the real plane is isomorphic to the
pure braid group modulo its centre. In the case of four points this fundamental
group is free with eleven generators.Comment: 5 pages, 1 figure, final version; to appear in Discrete &
Computational Geometry, available from the publishers at
http://www.springerlink.com/content/384516n7q24811ph
Multiple polaron quasiparticles with dipolar fermions in a bilayer geometry
We study the Fermi polaron problem with dipolar fermions in a bilayer
geometry, where a single dipolar particle in one layer interacts with a Fermi
sea of dipolar fermions in the other layer. By evaluating the polaron spectrum,
we obtain the appearance of a series of attractive branches when the distance
between the layers diminishes. We relate these to the appearance of a series of
bound two-dipole states when the interlayer dipolar interaction strength
increases. By inspecting the orbital angular momentum component of the polaron
branches, we observe an interchange of orbital character when system parameters
such as the gas density or the interlayer distance are varied. Further, we
study the possibility that the lowest energy two-body bound state spontaneously
acquires a finite center of mass momentum when the density of fermions exceeds
a critical value, and we determine the dominating orbital angular momenta that
characterize the pairing. Finally, we propose to use the tunneling rate from
and into an auxiliary layer as an experimental probe of the impurity spectral
function.Comment: 19 pages, 18 figures. Accepted versio
Diseño de recursos didácticos para aulas virtuales
1 archivo PDF (21 páginas)Texto que hace referencia a las dificultades a las que se enfrentan los docentes de ciencias básicas al utilizar plataformas a distancia, al diseñar y utilizar cursos, ya sea en e-learning o enseñanza combinada, y la forma en que se puede desarrollar la habilidad de resolver problemas, pues existen numerosas dificultades y obstáculos en este proceso, incluso en enseñanza presencial
Complete genome of a European hepatitis C virus subtype 1g isolate: phylogenetic and genetic analyses
<p>Abstract</p> <p>Background</p> <p>Hepatitis C virus isolates have been classified into six main genotypes and a variable number of subtypes within each genotype, mainly based on phylogenetic analysis. Analyses of the genetic relationship among genotypes and subtypes are more reliable when complete genome sequences (or at least the full coding region) are used; however, so far 31 of 80 confirmed or proposed subtypes have at least one complete genome available. Of these, 20 correspond to confirmed subtypes of epidemic interest.</p> <p>Results</p> <p>We present and analyse the first complete genome sequence of a HCV subtype 1g isolate. Phylogenetic and genetic distance analyses reveal that HCV-1g is the most divergent subtype among the HCV-1 confirmed subtypes. Potential genomic recombination events between genotypes or subtype 1 genomes were ruled out. We demonstrate phylogenetic congruence of previously deposited partial sequences of HCV-1g with respect to our sequence.</p> <p>Conclusion</p> <p>In light of this, we propose changing the current status of its subtype-specific designation from provisional to confirmed.</p
Identification and functional analysis of novel phosphorylation sites in the RNA surveillance protein Upf1.
One third of inherited genetic diseases are caused by mRNAs harboring premature termination codons as a result of nonsense mutations. These aberrant mRNAs are degraded by the Nonsense-Mediated mRNA Decay (NMD) pathway. A central component of the NMD pathway is Upf1, an RNA-dependent ATPase and helicase. Upf1 is a known phosphorylated protein, but only portions of this large protein have been examined for phosphorylation sites and the functional relevance of its phosphorylation has not been elucidated in Saccharomyces cerevisiae. Using tandem mass spectrometry analyses, we report the identification of 11 putative phosphorylated sites in S. cerevisiae Upf1. Five of these phosphorylated residues are located within the ATPase and helicase domains and are conserved in higher eukaryotes, suggesting a biological significance for their phosphorylation. Indeed, functional analysis demonstrated that a small carboxy-terminal motif harboring at least three phosphorylated amino acids is important for three Upf1 functions: ATPase activity, NMD activity and the ability to promote translation termination efficiency. We provide evidence that two tyrosines within this phospho-motif (Y-738 and Y-742) act redundantly to promote ATP hydrolysis, NMD efficiency and translation termination fidelity
Ecosystem carbon 7 dioxide fluxes after disturbance in forests of North America
Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m−2y−1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m−2y−1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER
Dynamic habitat models reflect interannual movement of cetaceans within the California current ecosystem
This modeling project was funded by the Navy, Commander, U.S. Pacific Fleet (U.S. Navy), the Bureau of Ocean Energy Management (BOEM), and by the National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Southwest Fisheries Science Center (SWFSC). The 2018 survey was conducted as part of the Pacific Marine Assessment Program for Protected Species (PacMAPPS), a collaborative effort between NOAA Fisheries, the U.S. Navy, and BOEM to collect data necessary to produce updated abundance estimates for cetaceans in the CCE study area. BOEM funding was provided via Interagency Agreement (IAA) M17PG00025, and Navy funding via IAA N0007018MP4C560, under the Mexican permit SEMARNAT/SGPA/DGVS/013212/18. The methods used to derive uncertainty estimates were developed as part of “DenMod: Working Group for the Advancement of Marine Species Density Surface Modeling” funded by OPNAV N45 and the SURTASS LFA Settlement Agreement, and managed by the U.S. Navy’s Living Marine Resources (LMR) program under Contract No. N39430-17-C-1982. Other permits included INEGI: Oficio núm. 400./331/2018, INEGI.GMA 1.03 SAGARPA de Oficio B00.02.04.1530/2018 NMFS Permit No. 19091.The distribution of wide-ranging cetacean species often cross national or jurisdictional boundaries, which creates challenges for monitoring populations and managing anthropogenic impacts, especially if data are only available for a portion of the species’ range. Many species found off the U.S. West Coast are known to have continuous distributions into Mexican waters, with highly variable abundance within the U.S. portion of their range. This has contributed to annual variability in design-based abundance estimates from systematic shipboard surveys off the U.S. West Coast, particularly for the abundance of warm temperate species such as striped dolphin, Stenella coeruleoalba, which increases off California during warm-water conditions and decreases during cool-water conditions. Species distribution models (SDMs) can accurately describe shifts in cetacean distribution caused by changing environmental conditions, and are increasingly used for marine species management. However, until recently, data from waters off the Baja California peninsula, México, have not been available for modeling species ranges that span from Baja California to the U.S. West Coast. In this study, we combined data from 1992–2018 shipboard surveys to develop SDMs off the Pacific Coast of Baja California for ten taxonomically diverse cetaceans. We used a Generalized Additive Modeling framework to develop SDMs based on line-transect surveys and dynamic habitat variables from the Hybrid Coordinate Ocean Model (HYCOM). Models were developed for ten species: long- and short-beaked common dolphins (Delphinus delphis delphis and D. d. bairdii), Risso’s dolphin (Grampus griseus), Pacific white-sided dolphin (Lagenorhynchus obliquidens), striped dolphin, common bottlenose dolphin (Tursiops truncatus), sperm whale (Physeter macrocephalus), blue whale (Balaenoptera musculus), fin whale (B. physalus), and humpback whale (Megaptera novaeangliae). The SDMs provide the first fine-scale (approximately 9 x 9 km grid) estimates of average species density and abundance, including spatially-explicit measures of uncertainty, for waters off the Baja California peninsula. Results provide novel insights into cetacean ecology in this region as well as quantitative spatial data for the assessment and mitigation of anthropogenic impacts.Publisher PDFPeer reviewe
- …