179 research outputs found

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure

    Disrupting the Acyl Carrier Protein/SpoT Interaction In Vivo: Identification of ACP Residues Involved in the Interaction and Consequence on Growth

    Get PDF
    In bacteria, Acyl Carrier Protein (ACP) is the central cofactor for fatty acid biosynthesis. It carries the acyl chain in elongation and must therefore interact successively with all the enzymes of this pathway. Yet, ACP also interacts with proteins of diverse unrelated function. Among them, the interaction with SpoT has been proposed to be involved in regulating ppGpp levels in the cell in response to fatty acid synthesis inhibition. In order to better understand this mechanism, we screened for ACP mutants unable to interact with SpoT in vivo by bacterial two-hybrid, but still functional for fatty acid synthesis. The position of the selected mutations indicated that the helix II of ACP is responsible for the interaction with SpoT. This suggested a mechanism of recognition similar to one used for the enzymes of fatty acid synthesis. Consistently, the interactions tested by bacterial two-hybrid of ACP with fatty acid synthesis enzymes were also affected by the mutations that prevented the interaction with SpoT. Yet, interestingly, the corresponding mutant strains were viable, and the phenotypes of one mutant suggested a defect in growth regulation

    Référentiel de connaissances pour un numérique éco-responsable

    Get PDF
    L’objectif de ce document est de définir un référentiel/socle de connaissances commun pour les enseignements sur le numérique responsable (impacts du numérique et comment les limiter1), à destination de formations en informatique ou d’autres filières incluant des cours d’informatique.Nous cherchons à répondre à la question suivante :Quelles connaissances devrait apporter une formation en informatique à des étudiantes et étudiants pour leur permettre d’apporter des réponses aux enjeux environnementaux et sociétaux dans leur vie professionnelle et citoyenne ?Ce document est donc focalisé sur les impacts du numérique, mais certains aspects plus généraux(enjeux environnementaux, contexte économique...) sont néanmoins abordés car nécessaires à la compréhension des aspects informatiques.Ce référentiel vise à fournir des notions et références utiles, mais n’a pas vocation à remplacer un cours

    Characterization of an OmpA-like outer membrane protein of the acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans

    Get PDF
    An OmpA family protein (FopA) previously reported as one of the major outer membrane proteins of an acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans was characterized with emphasis on the modification by heat and the interaction with peptidoglycan. A 30-kDa band corresponding to the FopA protein was detected in outer membrane proteins extracted at 75°C or heated to 100°C for 10 min prior to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). However, the band was not detected in outer membrane proteins extracted at ≤40°C and without boiling prior to electrophoresis. By Western blot analysis using the polyclonal antibody against the recombinant FopA, FopA was detected as bands with apparent molecular masses of 30 and 90 kDa, suggesting that FopA existed as an oligomeric form in the outer membrane of A. ferrooxidans. Although the fopA gene with a sequence encoding the signal peptide was successfully expressed in the outer membrane of Escherichia coli, the recombinant FopA existed as a monomer in the outer membrane of E. coli. FopA was detected in peptidoglycan-associated proteins from A. ferrooxidans. The recombinant FopA also showed the peptidoglycan-binding activity

    Scanning Tunneling Microscopy in TTF-TCNQ :direct proof of phase and amplitude modulated charge density waves

    Full text link
    Charge density waves (CDW) have been studied at the surface of a cleaved TTF-TCNQ single crystal using a low temperature scanning tunneling microscope (STM) under ultra high vacuum (UHV) conditions. All CDW phase transitions of TTF-TCNQ have been identified. The measurement of the modulation wave vector along the a direction provides the first evidence for the existence of domains comprising single plane wave modulated structures in the temperature regime where the transverse wave vector of the CDW is temperature dependent, as hinted by the theory more than 20 years ago.Comment: To appear in Phys.Rev.Rapid. Com

    Safety, efficacy, and immunogenicity of an inactivated influenza vaccine in healthy adults: a randomized, placebo-controlled trial over two influenza seasons

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Seasonal influenza imposes a substantial personal morbidity and societal cost burden. Vaccination is the major strategy for influenza prevention; however, because antigenically drifted influenza A and B viruses circulate annually, influenza vaccines must be updated to provide protection against the predicted prevalent strains for the next influenza season. The aim of this study was to assess the efficacy, safety, reactogenicity, and immunogenicity of a trivalent inactivated split virion influenza vaccine (TIV) in healthy adults over two influenza seasons in the US.</p> <p>Methods</p> <p>The primary endpoint of this double-blind, randomized study was the average efficacy of TIV versus placebo for the prevention of vaccine-matched, culture-confirmed influenza (VMCCI) across the 2005-2006 and 2006-2007 influenza seasons. Secondary endpoints included the prevention of laboratory-confirmed (defined by culture and/or serology) influenza, as well as safety, reactogenicity, immunogenicity, and consistency between three consecutive vaccine lots. Participants were assessed actively during both influenza seasons, and nasopharyngeal swabs were collected for viral culture from individuals with influenza-like illness. Blood specimens were obtained for serology one month after vaccination and at the end of each influenza season's surveillance period.</p> <p>Results</p> <p>Although the point estimate for efficacy in the prevention of all laboratory-confirmed influenza was 63.2% (97.5% confidence interval [CI] lower bound of 48.2%), the point estimate for the primary endpoint, efficacy of TIV against VMCCI across both influenza seasons, was 46.3% with a 97.5% CI lower bound of 9.8%. This did not satisfy the pre-specified success criterion of a one-sided 97.5% CI lower bound of >35% for vaccine efficacy. The VMCCI attack rates were very low overall at 0.6% and 1.2% in the TIV and placebo groups, respectively. Apart from a mismatch for influenza B virus lineage in 2005-2006, there was a good match between TIV and the circulating strains. TIV was highly immunogenic, and immune responses were consistent between three different TIV lots. The most common reactogenicity events and spontaneous adverse events were associated with the injection site, and were mild in severity.</p> <p>Conclusions</p> <p>Despite a good immune response, and an average efficacy over two influenza seasons against laboratory-confirmed influenza of 63.2%, the pre-specified target (lower one-sided 97.5% confidence bound for efficacy > 35%) for the primary efficacy endpoint, the prevention of VMCCI, was not met. However, the results should be interpreted with caution in view of the very low attack rates we observed at the study sites in the 2005-2006 and 2006-2007, which corresponded to relatively mild influenza seasons in the US. Overall, the results showed that TIV has an acceptable safety profile and offered clinical benefit that exceeded risk.</p> <p>Trial registration</p> <p>NCT00216242</p

    The Chromodomain of LIKE HETEROCHROMATIN PROTEIN 1 Is Essential for H3K27me3 Binding and Function during Arabidopsis Development

    Get PDF
    Polycomb group (PcG) proteins are essential to maintain gene expression patterns during development. Transcriptional repression by PcG proteins involves trimethylation of H3K27 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2) in animals and plants. PRC1 binds to H3K27me3 and is required for transcriptional repression in animals, but in plants PRC1-like activities have remained elusive. One candidate protein that could be involved in PRC1-like functions in plants is LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), because LHP1 associates with genes marked by H3K27me3 in vivo and has a chromodomain that binds H3K27me3 in vitro. Here, we show that disruption of the chromodomain of Arabidopsis thaliana LHP1 abolishes H3K27me3 recognition, releases gene silencing and causes similar phenotypic alterations as transcriptional lhp1 null mutants. Therefore, binding to H3K27me3 is essential for LHP1 protein function

    The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock

    Get PDF
    RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered

    Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability

    Get PDF
    BACKGROUND: The emergence of eukaryotes was characterized by the expansion and diversification of several ancient RNA-binding domains and the apparent de novo innovation of new RNA-binding domains. The identification of these RNA-binding domains may throw light on the emergence of eukaryote-specific systems of RNA metabolism. RESULTS: Using sensitive sequence profile searches, homology-based fold recognition and sequence-structure superpositions, we identified novel, divergent versions of the Sm domain in the Scd6p family of proteins. This family of Sm-related domains shares certain features of conventional Sm domains, which are required for binding RNA, in addition to possessing some unique conserved features. We also show that these proteins contain a second previously uncharacterized C-terminal domain, termed the FDF domain (after a conserved sequence motif in this domain). The FDF domain is also found in the fungal Dcp3p-like and the animal FLJ22128-like proteins, where it fused to a C-terminal domain of the YjeF-N domain family. In addition to the FDF domains, the FLJ22128-like proteins contain yet another divergent version of the Sm domain at their extreme N-terminus. We show that the YjeF-N domains represent a novel version of the Rossmann fold that has acquired a set of catalytic residues and structural features that distinguish them from the conventional dehydrogenases. CONCLUSIONS: Several lines of contextual information suggest that the Scd6p family and the Dcp3p-like proteins are conserved components of the eukaryotic RNA metabolism system. We propose that the novel domains reported here, namely the divergent versions of the Sm domain and the FDF domain may mediate specific RNA-protein and protein-protein interactions in cytoplasmic ribonucleoprotein complexes. More specifically, the protein complexes containing Sm-like domains of the Scd6p family are predicted to regulate the stability of mRNA encoding proteins involved in cell cycle progression and vesicular assembly. The Dcp3p and FLJ22128 proteins may localize to the cytoplasmic processing bodies and possibly catalyze a specific processing step in the decapping pathway. The explosive diversification of Sm domains appears to have played a role in the emergence of several uniquely eukaryotic ribonucleoprotein complexes, including those involved in decapping and mRNA stability

    Arabidopsis Homologs of Retinoblastoma-Associated Protein 46/48 Associate with a Histone Deacetylase to Act Redundantly in Chromatin Silencing

    Get PDF
    RNA molecules such as small-interfering RNAs (siRNAs) and antisense RNAs (asRNAs) trigger chromatin silencing of target loci. In the model plant Arabidopsis, RNA–triggered chromatin silencing involves repressive histone modifications such as histone deacetylation, histone H3 lysine-9 methylation, and H3 lysine-27 monomethylation. Here, we report that two Arabidopsis homologs of the human histone-binding proteins Retinoblastoma-Associated Protein 46/48 (RbAp46/48), known as MSI4 (or FVE) and MSI5, function in partial redundancy in chromatin silencing of various loci targeted by siRNAs or asRNAs. We show that MSI5 acts in partial redundancy with FVE to silence FLOWERING LOCUS C (FLC), which is a crucial floral repressor subject to asRNA–mediated silencing, FLC homologs, and other loci including transposable and repetitive elements which are targets of siRNA–directed DNA Methylation (RdDM). Both FVE and MSI5 associate with HISTONE DEACETYLASE 6 (HDA6) to form complexes and directly interact with the target loci, leading to histone deacetylation and transcriptional silencing. In addition, these two genes function in de novo CHH (H = A, T, or C) methylation and maintenance of symmetric cytosine methylation (mainly CHG methylation) at endogenous RdDM target loci, and they are also required for establishment of cytosine methylation in the previously unmethylated sequences directed by the RdDM pathway. This reveals an important functional divergence of the plant RbAp46/48 relatives from animal counterparts
    corecore