181 research outputs found

    SFRP4 drives invasion in gastric cancer and is an early predictor of recurrence.

    Get PDF
    OBJECTIVE: Gastric cancer patients generally have a poor outcome, particularly those with advanced-stage disease which is defined by the increased invasion of cancer locally and is associated with higher metastatic potential. This study aimed to identify genes that were functional in the most fundamental hallmark of cancer, namely invasion. We then wanted to assess their value as biomarkers of gastric cancer progression and recurrence. DESIGN: Data from a cohort of patients profiled on cDNA expression arrays was interrogated using K-means analysis. This genomic approach classified the data based on patterns of gene expression allowing the identification of the genes most correlated with the invasion of GC. We evaluated the functional role of a key protein from this analysis in invasion and as a biomarker of recurrence after curative resection. RESULTS: Expression of secreted frizzled-related protein 4 (SFRP4) was identified as directly proportional to gastric cancer invasion. This finding was validated in multiple, independent datasets and its functional role in invasion was also confirmed using invasion assays. A change in serum levels of SFRP4 after curative resection, when coupled with AJCC stage, can accurately predict the risk of disease recurrence after curative therapy in an assay we termed PredictR. CONCLUSIONS: This simple ELISA-based assay can help predict recurrence of disease after curative gastric cancer surgery irrespective of adjuvant therapy. The results require further evaluation in a prospective trial but would help in the rational prescription of cancer therapies and surveillance to prevent under or over treatment of patients after curative resection

    Frizzled-7 is required for Wnt signaling in gastric tumours with and without Apc mutations

    Get PDF
    A subset of patients with gastric cancer have mutations in genes that participate in or regulate Wnt signaling at the level of ligand (Wnt) receptor (Fzd) binding. Moreover, increased Fzd expression is associated with poor clinical outcome. Despite these findings, there are no in vivo studies investigating the potential of targeting Wnt receptors for treating gastric cancer, and the specific Wnt receptor transmitting oncogenic Wnt signaling in gastric cancer is unknown. Here, we use inhibitors of Wnt/Fzd (OMP-18R5/vantictumab) and conditional gene deletion to test the therapeutic potential of targeting Wnt signaling in preclinical models of intestinal-type gastric cancer and ex vivo organoid cultures. Pharmacologic targeting of Fzd inhibited the growth of gastric adenomas in vivo. We identified Fzd7 to be the predominant Wnt receptor responsible for transmitting Wnt signaling in human gastric cancer cells and mouse models of gastric cancer, whereby Fzd7-deficient cells were retained in gastric adenomas but were unable to respond to Wnt signals and consequently failed to proliferate. Genetic deletion of Fzd7 or treatment with vantictumab was sufficient to inhibit the growth of gastric adenomas with or without mutations to Apc. Vantictumab is currently in phase Ib clinical trials for advanced pancreatic, lung, and breast cancer. Our data extend the scope of patients that may benefit from this therapeutic approach as we demonstrate that this drug will be effective in treating patients with gastric cancer regardless of APC mutation status

    Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer

    Get PDF
    We studied 2332 individuals with monoallelic mutations in MUTYH among 9504 relatives of 264 colorectal cancer (CRC) cases with a MUTYH mutation. We estimated CRC risks through 70 years of age of 7.2% for male carriers of monoallelic mutations (95% confidence interval [CI], 4.6%-11.3%) and 5.6% for female carriers of monoallelic mutations (95% CI, 3.6%-8.8%), irrespective of family history. For monoallelic MUTYH mutation carriers with a first-degree relative with CRC diagnosed by 50 years of age who does not have the MUTYH mutation, risks of CRC were 12.5% for men (95% CI, 8.6%-17.7%) and 10% for women (95% CI, 6.7%-14.4%). Risks of CRC for carriers of monoallelic mutations in MUTYH with a first-degree relative with CRC are sufficiently high to warrant more intensive screening than for the general population

    Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort

    Get PDF
    Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression

    Interleukin-11 Is the Dominant IL-6 Family Cytokine during Gastrointestinal Tumorigenesis and Can Be Targeted Therapeutically

    Get PDF
    SummaryAmong the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer “hallmarks” through downstream activation of the gp130/STAT3 signaling pathway. However, we show that the related cytokine IL-11 has a stronger correlation with elevated STAT3 activation in human gastrointestinal cancers. Using genetic mouse models, we reveal that IL-11 has a more prominent role compared to IL-6 during the progression of sporadic and inflammation-associated colon and gastric cancers. Accordingly, in these models and in human tumor cell line xenograft models, pharmacologic inhibition of IL-11 signaling alleviated STAT3 activation, suppressed tumor cell proliferation, and reduced the invasive capacity and growth of tumors. Our results identify IL-11 signaling as a potential therapeutic target for the treatment of gastrointestinal cancers

    A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets

    Get PDF
    Objective: Gastric cancer is a major gastrointestinal malignancy for which targeted therapies are emerging as treatment options. This study sought to identify the most prevalent molecular targets in gastric cancer and to elucidate systematic patterns of exclusivity and co-occurrence among these targets, through comprehensive genomic analysis of a large panel of gastric cancers. Design: Using high-resolution single nucleotide polymorphism arrays, copy number alterations were profiled in a panel of 233 gastric cancers (193 primary tumours, 40 cell lines) and 98 primary matched gastric non-malignant samples. For selected alterations, their impact on gene expression and clinical outcome were evaluated. Results: 22 recurrent focal alterations (13 amplifications and nine deletions) were identified. These included both known targets (FGFR2, ERBB2) and also novel genes in gastric cancer (KLF5, GATA6). Receptor tyrosine kinase (RTK)/RAS alterations were found to be frequent in gastric cancer. This study also demonstrates, for the first time, that these alterations occur in a mutually exclusive fashion, with KRAS gene amplifications highlighting a clinically relevant but previously underappreciated gastric cancer subgroup. FGFR2-amplified gastric cancers were also shown to be sensitive to dovitinib, an orally bioavailable FGFR/VEGFR targeting agent, potentially representing a subtype-specific therapy for FGFR2-amplified gastric cancers. Conclusion: The study demonstrates the existence of five distinct gastric cancer patient subgroups, defined by the signature genomic alterations FGFR2 (9% of tumours), KRAS (9%), EGFR (8%), ERBB2 (7%) and MET (4%). Collectively, these subgroups suggest that at least 37% of gastric cancer patients may be potentially treatable by RTK/RAS directed therapies

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    A tumor focused approach to resolving the etiology of DNA mismatch repair deficient tumors classified as suspected Lynch syndrome

    Get PDF
    Published online 26 April 2023Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n = 135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n = 137; 80×CRCs, 33×ECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.Romy Walker ... Nicola Poplawski ... et al. and for the Family Cancer Clinics of Australi

    Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer

    Get PDF
    Many solid cancers are known to exhibit a high degree of heterogeneity in their deregulation of different oncogenic pathways. We sought to identify major oncogenic pathways in gastric cancer (GC) with significant relationships to patient survival. Using gene expression signatures, we devised an in silico strategy to map patterns of oncogenic pathway activation in 301 primary gastric cancers, the second highest cause of global cancer mortality. We identified three oncogenic pathways (proliferation/stem cell, NF-κB, and Wnt/β-catenin) deregulated in the majority (>70%) of gastric cancers. We functionally validated these pathway predictions in a panel of gastric cancer cell lines. Patient stratification by oncogenic pathway combinations showed reproducible and significant survival differences in multiple cohorts, suggesting that pathway interactions may play an important role in influencing disease behavior. Individual GCs can be successfully taxonomized by oncogenic pathway activity into biologically and clinically relevant subgroups. Predicting pathway activity by expression signatures thus permits the study of multiple cancer-related pathways interacting simultaneously in primary cancers, at a scale not currently achievable by other platforms
    corecore