1,081 research outputs found

    Habitable Climates: The Influence of Eccentricity

    Full text link
    In the outer regions of the habitable zone, the risk of transitioning into a globally frozen "snowball" state poses a threat to the habitability of planets with the capacity to host water-based life. We use a one-dimensional energy balance climate model (EBM) to examine how obliquity, spin rate, orbital eccentricity, and ocean coverage might influence the onset of such a snowball state. For an exoplanet, these parameters may be strikingly different from the values observed for Earth. Since, for constant semimajor axis, the annual mean stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest habitable semimajor axis (for fixed atmospheric composition) to scale as (1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower bound on the outer boundary of the habitable zone, but the influence of obliquity and ocean fraction can be profound in the context of planets on eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending on obliquity, with higher obliquity worlds generally more stable against snowball transitions. One might also expect that the long winter at an eccentric planet's apoastron would render it more susceptible to global freezing. Our models suggest that this is not a significant risk for Earth-like planets around Sun-like stars since such planets are buffered by the thermal inertia provided by oceans covering at least 10% of their surface. Since planets on eccentric orbits spend much of their year particularly far from the star, such worlds might turn out to be especially good targets for direct observations with missions such as TPF-Darwin. Nevertheless, the extreme temperature variations achieved on highly eccentric exo-Earths raise questions about the adaptability of life to marginally or transiently habitable conditions.Comment: References added, text and figures updated, accepted by Ap

    Terrestrial, Habitable-Zone Exoplanet Frequency from Kepler

    Full text link
    Data from Kepler's first 136 days of operation are analyzed to determine the distribution of exoplanets with respect to radius, period, and host-star spectral type. The analysis is extrapolated to estimate the percentage of terrestrial, habitable-zone exoplanets. The Kepler census is assumed to be complete for bright stars (magnitude 0.5 Earth radius and periods <42 days. It is also assumed that the size distribution of planets is independent of orbital period, and that there are no hidden biases in the data. Six significant statistical results are found: there is a paucity of small planet detections around faint target stars, probably an instrumental effect; the frequency of mid-size planet detections is independent of whether the host star is bright or faint; there are significantly fewer planets detected with periods <3 days, compared to longer periods, almost certainly an astrophysical effect; the frequency of all planets in the population with periods <42 days is 29%, broken down as terrestrials 9%, ice giants 18%, and gas giants 3%; the population has a planet frequency with respect to period which follows a power-law relation dN/dP ~ P^{\beta - 1}, with \beta = 0.71 +/- 0.08; and an extrapolation to longer periods gives the frequency of terrestrial planets in the habitable zones of FGK stars as \eta_\oplus = (34 +/- 14)%. Thus about one-third of FGK stars are predicted to have at least one terrestrial, habitable-zone planet.Comment: 27 pages, 5 figure

    On the Apparent Orbital Inclination Change of the Extrasolar Transiting Planet TrES-2b

    Full text link
    On June 15, 2009 UT the transit of TrES-2b was detected using the University of Arizona's 1.55 meter Kuiper Telescope with 2.0-2.5 millimag RMS accuracy in the I-band. We find a central transit time of Tc=2454997.76286±0.00035T_c = 2454997.76286 \pm0.00035 HJD, an orbital period of P=2.4706127±0.0000009P = 2.4706127 \pm 0.0000009 days, and an inclination angle of i=83∘.92±0.05i = 83^{\circ}.92 \pm 0.05, which is consistent with our re-fit of the original I-band light curve of O'Donovan et al. (2006) where we find i=83∘.84±0.05i = 83^{\circ}.84 \pm0.05. We calculate an insignificant inclination change of Δi=−0∘.08±0.07\Delta i = -0^{\circ}.08 \pm 0.07 over the last 3 years, and as such, our observations rule out, at the ∼11σ\sim 11 \sigma level, the apparent change of orbital inclination to ipredicted=83∘.35±0.1i_{predicted} = 83^{\circ}.35 \pm0.1 as predicted by Mislis and Schmitt (2009) and Mislis et al. (2010) for our epoch. Moreover, our analysis of a recently published Kepler Space Telescope light curve (Gilliland et al. 2010) for TrES-2b finds an inclination of i=83∘.91±0.03i = 83^{\circ}.91 \pm0.03 for a similar epoch. These Kepler results definitively rule out change in ii as a function of time. Indeed, we detect no significant changes in any of the orbital parameters of TrES-2b.Comment: 19 pages, 1 table, 7 figures. Re-submitted to ApJ, January 14, 201

    Adaptive Optics Images of Kepler Objects of Interest

    Get PDF
    All transiting planets are at risk of contamination by blends with nearby, unresolved stars. Blends dilute the transit signal, causing the planet to appear smaller than it really is, or produce a false positive detection when the target star is blended with eclipsing binary stars. This paper reports on high spatial-resolution adaptive optics images of 90 Kepler planetary candidates. Companion stars are detected as close as 0.1 arcsec from the target star. Images were taken in the near-infrared (J and Ks bands) with ARIES on the MMT and PHARO on the Palomar Hale 200-inch. Most objects (60%) have at least one star within 6 arcsec separation and a magnitude difference of 9. Eighteen objects (20%) have at least one companion within 2 arcsec of the target star; 6 companions (7%) are closer than 0.5 arcsec. Most of these companions were previously unknown, and the associated planetary candidates should receive additional scrutiny. Limits are placed on the presence of additional companions for every system observed, which can be used to validate planets statistically using the BLENDER method. Validation is particularly critical for low-mass, potentially Earth-like worlds, which are not detectable with current-generation radial velocity techniques. High-resolution images are thus a crucial component of any transit follow-up program.Comment: 9 pages, 4 figures, accepted to A

    Planet Hunters: Assessing the Kepler Inventory of Short Period Planets

    Full text link
    We present the results from a search of data from the first 33.5 days of the Kepler science mission (Quarter 1) for exoplanet transits by the Planet Hunters citizen science project. Planet Hunters enlists members of the general public to visually identify transits in the publicly released Kepler light curves via the World Wide Web. Over 24,000 volunteers reviewed the Kepler Quarter 1 data set. We examine the abundance of \geq 2 R\oplus planets on short period (< 15 days) orbits based on Planet Hunters detections. We present these results along with an analysis of the detection efficiency of human classifiers to identify planetary transits including a comparison to the Kepler inventory of planet candidates. Although performance drops rapidly for smaller radii, \geq 4 R\oplus Planet Hunters \geq 85% efficient at identifying transit signals for planets with periods less than 15 days for the Kepler sample of target stars. Our high efficiency rate for simulated transits along with recovery of the majority of Kepler \geq 4 R\oplus planets suggest suggests the Kepler inventory of \geq 4 R\oplus short period planets is nearly complete.Comment: 41 pages,13 figures, 8 tables, accepted to Ap

    Proceedings of the Workshop on Improvements to Photometry

    Get PDF
    The purposes of the workshop were to determine what astronomical problems would benefit by increased photometric precision, determine the current level of precision, identify the processes limiting the precision, and recommend approaches to improving photometric precision. Twenty representatives of the university, industry, and government communities participated. Results and recommendations are discussed

    The Occurrence Rate of Earth Analog Planets Orbiting Sunlike Stars

    Full text link
    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine {\eta}_Earth, the fraction of Sunlike stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's science team has determined sizes, surface temperatures, orbit sizes and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days the density increases sharply with increasing period; for periods between 3 and 30 days the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1% to 3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of Feb 2011. This estimate of is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power law models. The accuracy of the extrapolation will improve as more data from the Kepler mission is folded in. Accurate knowledge of {\eta}_Earth is essential for the planning of future missions that will image and take spectra of Earthlike planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.Comment: Accepted for publication in the Astrophysical Journal. 19 pages, 8 figures. Minor text revisions, as requested by the scientific editor. Included an additional figure. No changes in the scientific result

    Environmental effects of SPS: The middle atmosphere

    Get PDF
    The heavy lift launch vehicle associated with the solar power satellite (SPS) would deposit in the upper atmosphere exhaust and reentry products which could modify the composition of the stratosphere, mesosphere, and lower ionosphere. In order to assess such effects, atmospheric model simulations were performed, especially considering a geographic zone centered at the launch and reentry latitudes

    Two-dimensional model studies of the effect of supersonic aircraft operations on the stratospheric ozone content

    Get PDF
    For a fleet of 250 aircraft, the change in the ozone column is predicted to be very close to zero; in fact, the ozone overburden may actually increase as a result of show that above 25 to 30 km the ozone abundance decreases via catalytic destruction, but at lower heights it increases, mainly as a result of coupling with odd hydrogen species. Water vapor released in the engine exhaust is predicted to cause ozone decreases; for the hypothetical engines used in the study, the total column ozone changes due to water vapor emission largely offset the predicted ozone increases due to NOx emission. The actual effect of water vapor may be less than calculated because present models do not include thermal feedback. Feedback refers to the cooling effect of additional water vapor that would tend to slow the NOx reactions which destroy ozone

    Tests of a multichannel photometer based on silicon diode detectors

    Get PDF
    A breadboard photometer was constructed that demonstrates a precision of 2 times 10 to the 4th power in the laboratory and scintillation-limited performance when used with an 0.5 m aperture telescope. Because the detectors and preamps are not cooled, only stars with m sub v approx. less than 4 are bright enough to allow the photometer to attain a precision of 1 times 10 to the 3rd power for three minute observations with an 0.5 m aperature telescope. Cooling the telescope should allow much fainter stars to be observed. Increasing the aperture of the telescope will allow higher precision and the observation of fainter stars
    • …
    corecore