150 research outputs found

    Purification and properties of plant cytochrome b5

    Full text link

    Transient fading X-ray emission detected during the optical rise of a tidal disruption event

    Full text link
    We report on the SRG/eROSITA detection of ultra-soft (kT=47−5+5kT=47^{+5}_{-5} eV) X-ray emission (LX=2.5−0.5+0.6×1043L_{\mathrm{X}}=2.5^{+0.6}_{-0.5} \times 10^{43} erg s−1^{-1}) from the tidal disruption event (TDE) candidate AT 2022dsb ∼\sim14 days before peak optical brightness. As the optical luminosity increases after the eROSITA detection, then the 0.2--2 keV observed flux decays, decreasing by a factor of ∼39\sim 39 over the 19 days after the initial X-ray detection. Multi-epoch optical spectroscopic follow-up observations reveal transient broad Balmer emission lines and a broad He II 4686A emission complex with respect to the pre-outburst spectrum. Despite the early drop in the observed X-ray flux, the He II 4686A complex is still detected for ∼\sim40 days after the optical peak, suggesting the persistence of an obscured, hard ionising source in the system. Three outflow signatures are also detected at early times: i) blueshifted Hα\alpha emission lines in a pre-peak optical spectrum, ii) transient radio emission, and iii) blueshifted Lyα\alpha absorption lines. The joint evolution of this early-time X-ray emission, the He II 4686A complex and these outflow signatures suggests that the X-ray emitting disc (formed promptly in this TDE) is still present after optical peak, but may have been enshrouded by optically thick debris, leading to the X-ray faintness in the months after the disruption. If the observed early-time properties in this TDE are not unique to this system, then other TDEs may also be X-ray bright at early times and become X-ray faint upon being veiled by debris launched shortly after the onset of circularisation.Comment: Submitted to MNRAS on 2023-08-02. 19 pages, 16 figures and 10 table

    Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation

    Get PDF
    Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance

    Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Get PDF
    Following antigen recognition, B cell receptor (BCR)-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2) is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs). Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system

    Optimization of Ribosome Structure and Function by rRNA Base Modification

    Get PDF
    BACKGROUND: Translating mRNA sequences into functional proteins is a fundamental process necessary for the viability of organisms throughout all kingdoms of life. The ribosome carries out this process with a delicate balance between speed and accuracy. This work investigates how ribosome structure and function are affected by rRNA base modification. The prevailing view is that rRNA base modifications serve to fine tune ribosome structure and function. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, yeast strains deficient in rRNA modifications in the ribosomal peptidyltransferase center were monitored for changes in and translational fidelity. These studies revealed allele-specific sensitivity to translational inhibitors, changes in reading frame maintenance, nonsense suppression and aa-tRNA selection. Ribosomes isolated from two mutants with the most pronounced phenotypic changes had increased affinities for aa-tRNA, and surprisingly, increased rates of peptidyltransfer as monitored by the puromycin assay. rRNA chemical analyses of one of these mutants identified structural changes in five specific bases associated with the ribosomal A-site. CONCLUSIONS/SIGNIFICANCE: Together, the data suggest that modification of these bases fine tune the structure of the A-site region of the large subunit so as to assure correct positioning of critical rRNA bases involved in aa-tRNA accommodation into the PTC, of the eEF-1A•aa-tRNA•GTP ternary complex with the GTPase associated center, and of the aa-tRNA in the A-site. These findings represent a direct demonstration in support of the prevailing hypothesis that rRNA modifications serve to optimize rRNA structure for production of accurate and efficient ribosomes

    A Novel Mouse c-fos Intronic Promoter That Responds to CREB and AP-1 Is Developmentally Regulated In Vivo

    Get PDF
    BACKGROUND: The c-fos proto-oncogene is an archetype for rapid and integrative transcriptional activation. Innumerable studies have focused on the canonical promoter, located upstream from the transcriptional start site. However, several regulatory sequences have been found in the first intron. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe an extremely conserved region in c-fos first intron that contains a putative TATA box, and functional TRE and CRE sites. This fragment drives reporter gene activation in fibroblasts, which is enhanced by increasing intracellular calcium and cAMP and by cotransfection of CREB or c-Fos/c-Jun expression vectors. We produced transgenic mice expressing a lacZ reporter controlled by the intronic promoter. Lac Z expression of this promoter is restricted to the developing central nervous system (CNS) and the mesenchyme of developing mammary buds in embryos 12.5 days post-conception, and to brain tissue in adults. RT-QPCR analysis of tissue mRNA, including the anlage of the mammary gland and the CNS, confirms the existence of a novel, nested mRNA initiated in the first intron. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence for a novel, developmentally regulated promoter in the first intron of the c-fos gene

    Stoichiometry of HLA Class II-Invariant Chain Oligomers

    Get PDF
    BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHODOLOGY/PRINCIPAL FINDINGS: [corrected] We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii

    The Human Nucleolar Protein FTSJ3 Associates with NIP7 and Functions in Pre-rRNA Processing

    Get PDF
    NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A′ to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells

    The Lsm1-7/Pat1 complex binds to stress-activated mRNAs and modulates the response to hyperosmotic shock

    Get PDF
    RNA-binding proteins (RBPs) establish the cellular fate of a transcript, but an understanding of these processes has been limited by a lack of identified specific interactions between RNA and protein molecules. Using MS2 RNA tagging, we have purified proteins associated with individual mRNA species induced by osmotic stress, STL1 and GPD1. We found members of the Lsm1-7/Pat1 RBP complex to preferentially bind these mRNAs, relative to the non-stress induced mRNAs, HYP2 and ASH1. To assess the functional importance, we mutated components of the Lsm1-7/Pat1 RBP complex and analyzed the impact on expression of osmostress gene products. We observed a defect in global translation inhibition under osmotic stress in pat1 and lsm1 mutants, which correlated with an abnormally high association of both non-stress and stress-induced mRNAs to translationally active polysomes. Additionally, for stress-induced proteins normally triggered only by moderate or high osmostress, in the mutants the protein levels rose high already at weak hyperosmosis. Analysis of ribosome passage on mRNAs through co-translational decay from the 5' end (5P-Seq) showed increased ribosome accumulation in lsm1 and pat1 mutants upstream of the start codon. This effect was particularly strong for mRNAs induced under osmostress. Thus, our results indicate that, in addition to its role in degradation, the Lsm1-7/Pat1 complex acts as a selective translational repressor, having stronger effect over the translation initiation of heavily expressed mRNAs. Binding of the Lsm1-7/Pat1p complex to osmostress-induced mRNAs mitigates their translation, suppressing it in conditions of weak or no stress, and avoiding a hyperresponse when triggered
    • …
    corecore