171 research outputs found
Down-sampling of large lidar dataset in the context of off-road objects extraction
Nowadays, LiDAR (Light Detection and Ranging) is used in many fields, such as transportation. Thanks to the recent technological improvements, the current generation of LiDAR mapping instruments available on the market allows to acquire up to millions of three-dimensional (3D) points per second. On the one hand, such improvements allowed the development of LiDAR-based systems with increased productivity, enabling the quick acquisition of detailed 3D descriptions of the objects of interest. However, on the other hand, the extraction of the information of interest from such huge amount of acquired data can be quite challenging and time demanding. Motivated by such observation, this paper proposes the use of the Optimum Dataset method in order to ease and speed up the information extraction phase by significantly reducing the size of the acquired dataset while preserving (retain) the information of interest. This paper focuses on the data reduction of LiDAR datasets acquired on roads, with the goal of extraction the off-road objects. Mostly motivated by the need of mapping roads and quickly determining car position along a road, the development of efficient methods for the extraction of such kind of information is becoming a hot topic in the research community
On the use of the OptD method for building diagnostics
Terrestrial laser scanner (TLS) measurements can be used to assess the technical condition of buildings and structures; in particular, high-resolution TLS measurements should be taken in order to detect defects in building walls. This consequently results in the creation of a huge amount of data in a very short time. Despite high-resolution measurements typically being needed in certain areas of interest, e.g., to detect cracks, reducing redundant information on regions of low interest is of fundamental importance in order to enable computationally efficient and effective analysis of the dataset. In this work, data reduction is made by using the Optimum Dataset (OptD) method, which allows to significantly reduce the amount of data while preserving the geometrical information of the region of interest. As a result, more points are retained on areas corresponding to cracks and cavities than on flat and homogeneous surfaces. This approach allows for a thorough analysis of the surface discontinuity in building walls. In this investigation, the TLS dataset was acquired by means of the time-of-flight scanners Riegl VZ-400i and Leica ScanStation C10. The results obtained by reducing the TLS dataset by means of OptD show that this method is a viable solution for data reduction in building and structure diagnostics, thus enabling the implementation of computationally more efficient diagnostic strategies
Potential significance of photoexcited NO2 on global air quality with the NMMB/BSC chemical transport model
Atmospheric chemists have recently focused on the relevance of the NO2* + H2O → OH + HONO reaction to local air quality. This chemistry has been considered not relevant for the troposphere from known reaction rates until nowadays. New experiments suggested a rate constant of 1.7 × 10−13 cm3 molecule−1 s−1, which is an order of magnitude faster than the previously estimated upper limit of 1.2 × 10−14 cm3 molecule−1 s−1, determined by Crowley and Carl (1997). Using the new global model, NMMB/BSC Chemical Transport Model (NMMB/BSC-CTM), simulations are presented that assess the potential significance of this chemistry on global air quality. Results show that if the NO2* chemistry is considered following the upper limit kinetics recommended by Crowley and Carl (1997), it produces an enhancement of ozone surface concentrations of 4–6 ppbv in rural areas and 6–15 ppbv in urban locations, reaching a maximum enhancement of 30 ppbv in eastern Asia. Moreover, NO2 enhancements are minor (xemissions are present; however, differences are small in most parts of the globe
Experimental evaluation of a UWB-based cooperative positioning system for pedestrians in GNSS-denied environment
Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology in GNSS-denied environments. This data set was collected as part of a benchmarking measurement campaign carried out at the Ohio State University in October 2017. Pedestrians were equipped with a variety of sensors, including two different UWB systems, on a specially designed helmet serving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go mode along trajectories with predefined checkpoints and under various challenging environments. In the developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurements are used for positioning of the pedestrians. It is realised that the proposed system can achieve decimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals, provided that the measurements from infrastructure nodes are available and the network geometry is good. In the absence of these good conditions, the results show that the average accuracy degrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperative range observations further enhances the positioning accuracy and, in extreme cases when only one infrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. The complete test setup, the methodology for development, and data collection are discussed in this paper. In the next version of this system, additional observations such as the Wi-Fi, camera, and other signals of opportunity will be included
Modeling the Sources and Chemistry of Polar Tropospheric Halogens (Cl, Br, and I) Using the CAM-Chem Global Chemistry-Climate Model
31 pags., 12 figs., 6 tabs. -- Open Access funded by Creative Commons Atribution Licence 4.0. -- jame20925-sup-0001_Supporting_Information.pdfCurrent chemistry climate models do not include polar emissions and chemistry of halogens. This work presents the first implementation of an interactive polar module into the very short-lived (VSL) halogen version of the Community Atmosphere Model with Chemistry (CAM-Chem) model. The polar module includes photochemical release of molecular bromine, chlorine, and interhalogens from the sea-ice surface, and brine diffusion of iodine biologically produced underneath and within porous sea-ice. It also includes heterogeneous recycling of inorganic halogen reservoirs deposited over fresh sea-ice surfaces and snow-covered regions. The polar emission of chlorine, bromine, and iodine reach approximately 32, 250, and 39 Gg/year for Antarctica and 33, 271, and 4 Gg/year for the Arctic, respectively, with a marked seasonal cycle mainly driven by sunlight and sea-ice coverage. Model results are validated against polar boundary layer measurements of ClO, BrO, and IO, and satellite BrO and IO columns. This validation includes satellite observations of IO over inner Antarctica for which an iodine “leapfrog” mechanism is proposed to transport active iodine from coastal source regions to the interior of the continent. The modeled chlorine and bromine polar sources represent up to 45% and 80% of the global biogenic VSL and VSL emissions, respectively, while the Antarctic sea-ice iodine flux is ~10 times larger than that from the Southern Ocean. We present the first estimate of the contribution of polar halogen emissions to the global tropospheric halogen budget. CAM-Chem includes now a complete representation of halogen sources and chemistry from pole-to-pole and from the Earth's surface up to the stratopause.This study has been funded by the European Research Council Executive Agency under the European Union′s Horizon 2020 Research and Innovation
program (Project “ERC‐2016‐COG 726349 CLIMAHAL”) and supported by the Consejo Superior de Investigaciones Científicas (CSIC) of Spain. Computing
resources, support, and data storage are provided and maintained by the Computational and Information System Laboratory from the National
Center of Atmospheric Research (CISL,2017). R. P. F. would like to thank CONICET, ANPCyT (PICT 2015‐0714), UNCuyo (SeCTyP M032/3853), and
UTN (PID 4920‐194/2018) for the financial support. Partial funding for this work was provided by the Korea Polar Research Institute (KOPRI) project (PE18200). The contributions of the University of Bremen have been supported by the State of Bremen, the German Research Foundation (DFG),
the German Aerospace (DLR), and the European Space Agency (ESA). We gratefully acknowledge the funding by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) —Projektnummer 268020496—TRR 172, within the Transregional Collaborative Research Center “ArctiC
Amplification: Climate Relevant Atmospheric and SurfaCe Processes,and Feedback Mechanisms (AC)3 ” in subproject C03 as well as the support by
the University of Bremen Institutional Strategy Measure M8 in the framework of the DFG Excellence Initiative
Diurnal Variation in Mars Equatorial Odd Oxygen Species: Chemical Production and Loss Mechanisms
Odd oxygen (O, O(¹D), O₃) abundance and its variability in the Martian atmosphere results from complex physical and chemical interactions among atmospheric species, which are driven mainly by solar radiation and atmospheric conditions. Although our knowledge of Mars’ ozone distribution and variability has been significantly improved with the arrival of several recent orbiters, the data acquired by such missions is not enough to properly characterize its diurnal variation. Thus, photochemical models are useful tools to assist in such a characterization. Here, both the Martian ozone vertical distribution and its diurnal variation for equatorial latitudes are studied, using the JPL/Caltech one-dimensional photochemical model and diurnally-variable atmospheric profiles. The chosen equatorial latitude-region is based on the recent and future plans of NASA and other agencies to study this region by different surface missions. A production and loss analysis is performed in order to characterize the chemical mechanisms that drive odd oxygen's diurnal budget and variability on Mars making use of the comprehensive chemistry implemented in the model. The diurnal variation shows large differences in the abundance between daytime and nighttime; and variable behavior depending on the atmospheric layer. The photolysis-driven ozone diurnal profile is obtained at the surface, whilst a sharp decrease is obtained in the upper troposphere at daytime, which originates from the large differences in atomic oxygen abundances between atmospheric layers. Finally, no clear anticorrelation between ozone and water vapor is found in the diurnal cycle, contrary to the strong correlation observed by orbiters on a seasonal timescale
200-year ice core bromine reconstruction at Dome C (Antarctica): observational and modelling results
15 pags., 4 figs., 2 tabs.Bromine enrichment (Brenr) has been proposed as an ice core proxy for past sea-ice reconstruction. Understanding the processes that influence bromine preservation in the ice is crucial to achieve a reliable interpretation of ice core signals and to potentially relate them to past sea-ice variability. Here, we present a 210 years bromine record that sheds light on the main processes controlling bromine preservation in the snow and ice at Dome C, East Antarctic plateau. Using observations alongside a modelling approach, we demonstrate that the bromine signal is preserved at Dome C and it is not affected by the strong variations in ultraviolet radiation reaching the Antarctic plateau due to the stratospheric ozone hole. Based on this, we investigate whether the Dome C Brenr record can be used as an effective tracer of past Antarctic sea ice. Due to the limited time window covered by satellite measurements and the low sea-ice variability observed during the last 30 years in East Antarctica, we cannot fully validate Brenr as an effective proxy for past sea-ice reconstructions at Dome C.This research has been supported by the Horizon 2020 (Beyond EPICA; grant no. 815384), by the Programma Nazionale per la Ricerca in Antartide (PNRA; project no. PNRA16_00295), and by the bilateral international exchange award Royal Society (UK)-CNR, titled “Antarctic sea-ice history: developing robust ice core proxies” (grant no. IEC/R2/202110), awarded to Rachael H. Rhodes and Andrea Spolaor.Peer reviewe
200-year ice core bromine reconstruction at Dome C (Antarctica): observational and modelling results
Bromine enrichment (Brenr) has been proposed as an ice core proxy for
past sea-ice reconstruction. Understanding the processes that influence
bromine preservation in the ice is crucial to achieve a reliable
interpretation of ice core signals and to potentially relate them to past
sea-ice variability. Here, we present a 210 years bromine record that sheds
light on the main processes controlling bromine preservation in the snow and
ice at Dome C, East Antarctic plateau. Using observations alongside a
modelling approach, we demonstrate that the bromine signal is preserved at
Dome C and it is not affected by the strong variations in ultraviolet
radiation reaching the Antarctic plateau due to the stratospheric ozone
hole. Based on this, we investigate whether the Dome C Brenr record can
be used as an effective tracer of past Antarctic sea ice. Due to the limited
time window covered by satellite measurements and the low sea-ice
variability observed during the last 30 years in East Antarctica, we cannot
fully validate Brenr as an effective proxy for past sea-ice
reconstructions at Dome C.</p
- …