245 research outputs found

    Vitellogenin gene family in vertebrates: evolution and functions

    Get PDF
    The vitellogenin gene family is constituted of variable gene numbers encoding for polypeptides that are precursors of yolk proteins and derivatives in oviparous and ovoviviparous vertebrates. The comprehension of which mechanisms have shaped the evolution of vtg gene family represents an attractive field of research. The primary intent of this review is to summarize the evolutionary hypotheses that have been proposed over recent decades, highlighting the differences between the proposed models. Overall in vertebrates the evolutionary history of this gene family is the result of complex modifications deeply influenced by events such as Whole Genome Duplications (WGDs), lineage-specific gene losses and duplications. Interestingly the last hypothesis allowed to date the vitellogenin gene cluster origin in the common ancestor of gnathostomes. In addition, in the last decades, several works evidenced non-nutritional functions such as antibacterial, immunological and antioxidant activities overcoming its classical view as a simple source of nourishment for the developing embryos

    Transposable elements in vertebrates: species evolution and environmental adaptation

    Get PDF
    The evolutionary success of species is strictly related to their genome in terms of composition and functionality. Transposable elements (TEs) represent a considerable fraction of the nuclear DNA content, and given to their ability to spread throughout the genome, they are able to create genetic diversity at sequence, gene structure, and chromosome level. Vertebrates represent a highly successful taxon and its lineages are characterized by a variable TE content suggesting a different impact on the genome. In this manuscript, we highlight the importance of TEs in creating new regulatory sequences and genetic innovations extremely useful for diversification of vertebrates. Moreover, an increasing number of evidence suggests a link between TEs and environment. Indeed, given the richness of species adapted to a wide range of habitats and conditions, vertebrates are exposed to several ecological pressures with consequent effects on evolutionary adaptation

    Shedding light upon the complex net of genome size, genome composition and environment in chordates

    Get PDF
    The nucleotype theory has been advanced on the basis of studies regarding genome size and composition in various plant and animal species, i.e. the influence that genome can have on the phenotype independently of the informational content of DNA. It has also been noted that during evolution various interactions between different environmental factors and genome structural and functional parameters would have occurred. In this review, changes in genome size, transposon content, and base composition occurred during the evolution of chordates were examined. Many environmental stresses, such as temperature, can act on transposons and through these on genome size. Temperature is also one of the most important elements of natural selection able to interact both with base composition and genome size. It has been evidenced that temperature exerts a direct influence on base composition and its increase would have led to an higher content of genome GC-rich components during the evolution of chordates, in particular in endotherms. Temperature would have controlled the rate of biosynthesis in G1 phase and consequently the cell cycle duration which in turn would have interacted with genome size. The combined action of temperature, base composition, and genome size would also have been very important in controlling the metabolic rate. Finally, another important aspect of the nucleotypic effect is the influence that genome size and cell cycle duration, in correlation with environmental temperature, would have exert on embryo and larval development, very important for environmental adaptation. In conclusion, studies here reviewed to confirm the existence in chordates of a mutual influence between environment and genome non-coding components that would have played an important role in the evolution of these animals especially in environmental adaptation processes

    Developing pulmonary rehabilitation for COVID-19: Are we linked with the present literature? a lexical and geographical evaluation study based on the graph theory

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) pandemic is a severe ongoing global emergency. Despite high rates of asymptomatic patients, in many cases, the infection causes a rapid decline in pulmonary function due to an acute respiratory distress-like syndrome, leading to multi-organ failure and death. To date, recommendations about rehabilitation on COVID-19 are based on clinical data derived from other similar lung diseases. Rehabilitation literature lacks a standard taxonomy, limiting a proper evaluation of the most effective treatments for patients after COVID-19 infection. In this study, we assessed the clinical and rehabilitative associations and the geographical area involved in interstitial lung diseases (ILD) and in COVID-19, by a mathematical analysis based on graph theory. We performed a quantitative analysis of the literature in terms of lexical analysis and on how words are connected to each other. Despite a large difference in timeframe (throughout the last 23 years for ILD and in the last 1.5 years for COVID-19), the numbers of papers included in this study were similar. Our results show a clear discrepancy between rehabilitation proposed for COVID-19 and ILD. In ILD, the term “rehabilitation” and other related words such as “exercise” and “program” resulted in lower values of centrality and higher values of eccentricity, meaning relatively less importance of the training during the process of care in rehabilitation of patients with ILD. Conversely, “rehabilitation” was one of the most cited terms in COVID-19 literature, strongly associated with terms such as “exercise”, “physical”, and “program”, entailing a multidimensional approach of the rehabilitation for these patients. This could also be due to the widespread studies conducted on rehabilitation on COVID-19, with Chinese and Italian researchers more involved. The assessment of the terms used for the description of the rehabilitation may help to program shared rehabilitation knowledge and avoid literature misunderstandings

    Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review

    Get PDF
    There is an increasing interest in investigating dietary strategies able to modulate the gut microbial ecosystem which, in turn, may play a key role in human health. Dietary fibers (DFs) are widely recognized as molecules with prebiotic effects. The main objective of this systematic review was to: (i) analyze the results available on the impact of DF intervention on short chain fatty acids (SCFAs) production; (ii) evaluate the interplay between the type of DF intervention, the gut microbiota composition and its metabolic activities, and any other health associated outcome evaluated in the host. To this aim, initially, a comprehensive database of literature on human intervention studies assessing the effect of confirmed and candidate prebiotics on the microbial ecosystem was developed. Subsequently, studies performed on DFs and analyzing at least the impact on SCFA levels were extracted from the database. A total of 44 studies from 42 manuscripts were selected for the analysis. Among the different types of fiber, inulin was the DF investigated the most (n = 11). Regarding the results obtained on the ability of fiber to modulate total SCFAs, seven studies reported a significant increase, while no significant changes were reported in five studies, depending on the analytical methodology used. A total of 26 studies did not show significant differences in individual SCFAs, while the others reported significant differences for one or more SCFAs. The effect of DF interventions on the SCFA profile seemed to be strictly dependent on the dose and the type and structure of DFs. Overall, these results underline that, although affecting microbiota composition and derived metabolites, DFs do not produce univocal significant increase in SCFA levels in apparently healthy adults. In this regard, several factors (i.e., related to the study protocols and analytical methods) have been identified that could have affected the results obtained in the studies evaluated. Future studies are needed to better elucidate the relationship between DFs and gut microbiota in terms of SCFA production and impact on health-related markers

    Preserving mobility in older adults with physical frailty and sarcopenia: Opportunities, challenges, and recommendations for physical activity interventions

    Get PDF
    One of the most widely conserved hallmarks of aging is a decline in functional capabilities. Mobility loss is particularly burdensome due to its association with negative health outcomes, loss of independence and disability, and the heavy impact on quality of life. Recently, a new condition, physical frailty and sarcopenia, has been proposed to define a critical stage in the disabling cascade. Physical frailty and sarcopenia are characterized by weakness, slowness, and reduced muscle mass, yet with preserved ability to move indepen-dently. One of the strategies that have shown some benefits in combatting mobility loss and its consequences for older adults is physical activity. Here, we describe the opportunities and challenges for the development of physical activity interventions in people with physical frailty and sarcopenia. The aim of this article is to review age-related physio(patho)logical changes that impact mobility in old age and to provide recommendations and procedures in accordance with the available literature
    corecore